[1] LeBauer D, Treseder KK. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 2008, 89: 371-379 [2] Burton J, Chen CR, Xu ZH, et al. Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia. Soil Biology and Biochemistry, 2007, 39: 426-433 [3] 肖好燕, 刘宝, 余再鹏, 等. 亚热带不同林分土壤矿质氮库及氮矿化速率的季节动态. 应用生态学报, 2017, 28(3): 730-738 [4] 李贵才, 韩兴国, 黄建辉, 等. 森林生态系统土壤氮矿化影响因素研究进展. 生态学报, 2001, 21(7): 1187-1195 [5] 蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 2010, 34(8): 979-988 [6] Li ZL, Tian DS, Wang BX, et al. Microbes drive global soil nitrogen mineralization and availability. Global Change Biology, 2019, 25: 1078-1088 [7] 胡婵娟, 郭雷. 植被恢复的生态效应研究进展. 生态环境学报, 2012, 21(9): 1640-1646 [8] 蒋铮, 于倩楠, 乔明锋, 等. 云杉幼树根系分泌物对2种草本植物种子萌发和幼苗生长的影响. 林业科学, 2019, 55(6): 160-166 [9] 周泓杨, 张健, 张丹桔, 等. 不同郁闭度控制下马尾松人工林土壤动物群落特征. 生态学报, 2017, 37(6): 1939-1955 [10] 韩畅, 宋敏, 杜虎, 等. 广西不同林龄杉木、马尾松人工林根系生物量及碳储量特征. 生态学报, 2017, 37(7): 2282-2289 [11] Augusto L, Dupouey JL, Ranger J. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Biogeochemistry, 2003, 60: 821-831 [12] 包涛涛, 李丝雨, 王一, 等. 根系-菌根-土壤微生物对毛竹林土壤氮矿化过程的贡献. 生态学杂志, 2024, 43(5): 1234-1242 [13] 宋贤冲, 曹继钊, 唐健, 等. 猫儿山常绿阔叶林不同土层土壤微生物群落功能多样性. 生态科学, 2015, 34(6): 93-99 [14] Shi XZ, Wang JQ, Lucas-Borja ME, et al. Microbial diversity regulates ecosystem multifunctionality during natural secondary succession. Journal of Applied Ecology, 2021, 58: 2833-2842 [15] 李佳玉, 施秀珍, 李帅军, 等. 杉木人工林和天然次生林林龄对土壤酶活性的影响. 应用生态学报, 2024, 35(2): 339-346 [16] Su XP, Li SJ, Wan XH, et al. Understory vegetation dynamics of Chinese fir plantations and natural secondary forests in subtropical China. Forest Ecology and Management, 2021, 483: 118750 [17] Chodak M, Pietrzykowski M, Niklińska M. Development of microbial properties in a chronosequence of sandy mine soils. Applied Soil Ecology, 2009, 41: 259-268 [18] Wang CH, Wang NN, Zhu JX, et al. Soil gross N ammonification and nitrification from tropical to temperate forests in eastern China. Functional Ecology, 2018, 32: 83-94 [19] Bargali K, Manral V, Padalia K, et al. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils. Catena, 2018, 171: 125-135 [20] 王翠娟, 刘小飞, 杨柳明, 等. 中亚热带米槠人工林土壤微生物残体碳对凋落物和根系碳输入的响应. 应用生态学报, 2024, 35(1): 177-185 [21] 胡砚秋, 李文斌, 崔佳玉, 等. 亚热带常绿阔叶林优势种个体及生物量的点格局分析. 生态学报, 2016, 36(4): 1066-1072 [22] 张冰冰, 万晓华, 杨军钱, 等. 不同凋落物质量对杉木人工林土壤微生物群落结构的影响. 土壤学报, 2021, 58(4): 1040-1049 [23] Bastián F, Bouziri L, Nicolardot B, et al. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biology and Biochemistry, 2009, 41: 262-275 [24] Chen C, Han YH, Chen XL, et al. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nature Communications, 2019, 10: 1332 [25] Xu MP, Jian JN, Wang JY, et al. Response of root nutrient resorption strategies to rhizosphere soil microbial nutrient utilization along Robinia pseudoacacia plantation chronosequence. Forest Ecology and Management, 2021, 489: 119053 [26] Leff JW, Wieder WR, Taylor PG, et al. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Global Change Biology, 2012, 18: 2969-2979 [27] Song XZ, Xiao WF. Research advances of microsites and regeneration within canopy gap. Scientia Silvae Sinicae, 2006, 42: 114-119 [28] 蔡锰柯, 韩海荣, 程小琴, 等. 山西太岳山不同林龄华北落叶松林土壤微生物群落结构特征. 北京林业大学学报, 2022, 44(5): 86-93 [29] 佘婷, 田野. 森林生态系统凋落物多样性对分解过程和土壤微生物特性影响研究进展. 生态科学, 2020, 39(1): 213-223 [30] 邬子俊, 段晓清, 李文卿, 等. 混交对亚热带针叶树根际土壤氮矿化和微生物特性的影响. 生态学报, 2022, 42(20): 8414-8424 [31] 张勇强, 李智超, 厚凌宇, 等. 林分密度对杉木人工林下物种多样性和土壤养分的影响. 土壤学报, 2020, 57(1): 239-250 [32] 陈伏生, 曾德慧, 何兴元. 森林土壤氮素的转化与循环. 生态学杂志, 2004, 23(5): 126-133 [33] Fan B, Yin LM, Dijkstra FA, et al. Potential gross nitrogen mineralization and its linkage with microbial respiration along a forest transect in eastern China. Applied Soil Ecology, 2021, 171: 104347 [34] Elrys AS, Ali A, Zhang HM, et al. Patterns and drivers of global gross nitrogen mineralization in soils. Global Change Biology, 2021, 27: 5950-5962 [35] 程谊, 张金波, 蔡祖聪. 土壤中无机氮的微生物同化和非生物固定作用研究进展. 土壤学报, 2012, 49(5): 1030-1036 [36] Li XB, Li ZA, Zhang XD, et al. Disentangling immobilization of nitrate by fungi and bacteria in soil to plant residue amendment. Geoderma, 2020, 374: 114450 [37] Philippot L, Chenu C, Kappler A, et al. The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 2024, 22: 226-239 [38] Ontman R, Groffman PM, Driscoll CT, et al. Surprising relationships between soil pH and microbial biomass and activity in a northern hardwood forest. Biogeochemistry, 2023, 163: 265-277 [39] 王振宇, 傅彦榕, 邹秉章, 等. 亚热带森林不同恢复模式土壤与林下植被特征的动态研究. 福建农业科技, 2021, 52(8): 7-16 [40] 吴晓玲, 张世熔, 蒲玉琳, 等. 川西平原土壤微生物生物量碳氮磷含量特征及其影响因素分析. 中国生态农业学报, 2019, 27(10): 1607-1616 [41] 白爱芹, 傅伯杰, 曲来叶, 等. 大兴安岭火烧迹地恢复初期土壤微生物群落特征. 生态学报, 2012, 32(15): 4762-4771 [42] Brockett BF, Prescott CE, Grayston SJ, et al. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry, 2012, 44: 9-20 [43] 杨凯, 朱教君, 张金鑫, 等. 不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化. 生态学报, 2009, 29(10): 5500-5507 |