[1] Zhai JJ, Wang L, Liu Y, et al. Assessing the effects of China’s Three-North Shelter Forest Program over 40 years. Science of the Total Environment, 2023, 857: 159354 [2] 央视网. 三北防护林体系建设40年综合评价报告发布[EB/OL]. (2018-12-25) [2025-05-26]. https://tv.cctv.cn/2018/12/25/VIDEjCkrrYeqTLyYGaFz1GoZ18-1225.shtml [3] Qi K, Zhu JJ, Zheng X, et al. Impacts of the world’s largest afforestation program (Three-North Afforestation Program) on desertification control in sandy land of China. GIScience & Remote Sensing, 2023, 60: 1 [4] 马姜明, 刘世荣, 史作民, 等. 退化森林生态系统恢复评价研究综述. 生态学报, 2010, 30(12): 3297-3303 [5] Cao SX, Chen L, Shankman D, et al. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Science Reviews, 2011, 104: 240-245 [6] 刘国华, 傅伯杰, 陈利顶, 等. 中国生态退化的主要类型、特征及分布. 生态学报, 2000, 20(1): 13-19 [7] Hu YG, Li H, Wu D, et al. LAI-indicated vegetation dynamic in ecologically fragile region: A case study in the Three-North Shelter Forest program region of China. Ecological Indicators, 2021, 120: 106932 [8] Yu T, Liu PJ, Zhang Q, et al. Detecting forest degradation in the Three-North Forest Shelterbelt in China from multi-scale satellite images. Remote Sensing, 2021, 13: 1131 [9] Fu L, Zhang GL, Huang JP, et al. Prevalence of vegetation browning in China’s drylands under climate change. Geography and Sustainability, 2024, 5: 405-414 [10] Lu LL, Kuenzer C, Wang CZ, et al. Evaluation of three MODIS-derived vegetation index time series for dryland vegetation dynamics monitoring. Remote Sensing, 2015, 7: 7597-7614 [11] Xue J, Su BF. Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017, 17: 1353691 [12] Weiss M, Jacob F, Duveiller G. Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 2020, 236: 111402 [13] Gustau CV, Manuel CT, Álvaro MM, et al. A unified vegetation index for quantifying the terrestrial biosphere. Science Advances, 2021, 7: 7447 [14] Yan G, Margaret S, Jaime PG, et al. Remote sensing of forest degradation: A review. Environmental Research Letters, 2020, 15: 103001 [15] Boulton CA, Lenton TM, Boers N, et al. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nature Climate Change, 2022, 12: 271-278 [16] 杨娟, 李静, 宋永昌, 等. 受损常绿阔叶林生态系统退化评价指标体系和模型. 生态学报, 2006, 26(11): 3749-3756 [17] 杜晓军, 高贤明, 马克平. 生态系统退化程度的诊断: 生态恢复的基础与前提. 植物生态学报, 2003, 27(5): 700-708 [18] 章家恩, 徐琪. 退化生态系统的诊断特征及其评价指标体系. 长江流域资源与环境, 1999, 8(2): 215-220 [19] Pinagé ER, Bell MD, Longo M, et al. Forest structure and solar-induced fluorescence across intact and degra-ded forests in the Amazon. Remote Sensing of Environment, 2022, 274: 112998 [20] 赵瑜琦, 赵鹏云, 许泽海, 等. 2002—2022年气候变化和人类活动对山西省植被恢复的贡献. 应用生态学报, 2025, 36(1): 219-226 [21] Cochran WG. Sampling Techniques. New York: Wiley, 1977 [22] Khatami R, Mountrakis G, Stehman VS, et al. Mapping per-pixel predicted accuracy of classified remote sensing images. Remote Sensing of Environment, 2017, 191: 156-167 [23] 中华人民共和国生态环境部. 生态遥感地面观测与验证技术导则: HJ 1320-2023[EB/OL]. (2024-06-01) [2025-05-26]. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202312/t20231208_1058571.shtml [24] Huang XD, Liang TG, Zhang XT, et al. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001-2005 snow seasons over Northern Xinjiang. International Journal of Remote Sen-sing, 2011, 32: 133-152 [25] Olofsson P, Foody GM, Herold M, et al. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 2014, 148: 42-57 [26] Souza CM, Siqueira JV, Sales MH, et al. Ten-year Landsat classification of deforestation and forest degradation in the Brazilian Amazon. Remote Sensing, 2013, 5: 5493-5513 [27] 赵亮, 杨治春, 周卷华, 等. 秦岭北麓典型栓皮栎天然次生林群落结构与物种组成. 应用生态学报, 2023, 34(12): 3214-3222 [28] 海月. 基于遥感的北方森林生态系统退化识别方法及驱动力分析. 硕士论文. 贵阳: 贵州师范大学, 2020 [29] 国家林业和草原局. 退化林修复技术规程: GB/T 44351—2024. 北京: 中国标准出版社, 2024: 9-29 [30] 宋鑫洋, 牟梦宇, 赵晨光, 等. 黄土高原衰退柠条(Caragana korshinskii)林近自然修复技术模式. 中国沙漠, 2025, 45(3): 283-290 [31] Tucker JC. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 1979, 8: 127-150 [32] Bai Y, Li SG, Liu MH, et al. Assessment of vegetation change on the Mongolian Plateau over three decades using different remote sensing products. Journal of Environmental Management, 2022, 317: 115509 [33] Huete AR, Hua G, Qi J, et al. Normalization of multidirectional red and NIR reflectances with the SAVI. Remote Sensing of Environment, 1992, 41: 143-154 [34] Liu L, Gudmundsson L, Hauser M, et al. Soil moisture dominates dryness stress on ecosystem production globally. Nature Communications, 2020, 11: 4892 [35] 杨涛, 于颖, 杨曦光, 等. 无人机高光谱联合LiDAR估测林分与单木尺度叶绿素含量. 应用生态学报, 2023, 34(8): 2101-2112 [36] Nandy S, Kushwaha SS, Dadhwal VK. Forest degradation assessment in the upper catchment of the river Tons using remote sensing and GIS. Ecological Indicators, 2011, 11: 509-513 [37] Chen XY, Avtar R, Umarhadi AD, et al. Post-typhoon forest damage estimation using multiple vegetation indices and machine learning models. Weather and Climate Extremes, 2022, 38: 100494 [38] Gregory PA, David EK, Eben NB, et al. Selective logging in the Brazilian Amazon. Science, 2005, 310: 480-482 [39] Zhu Z, Woodcock EC, Olofsson P. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sensing of Environment, 2012, 122: 75-91 [40] Kennedy RE, Cohen BW, Schroeder AT. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sensing of Environment, 2007, 110: 370-386 [41] 贾铎, 王藏姣, 牟守国, 等. 基于NDVI时间序列轨迹的草原露天矿区植被时空动态特征. 应用生态学报, 2017, 28(6): 1808-1816 [42] Zhang AL, Wang D, Singh PV, et al. Establishing SMMS approach to accurately mine the characteristics of regional precipitation trends. Journal of Hydrology, 2023, 627: 130382 [43] Wu XC, Liu HY, Li XY, et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Global Change Biology, 2018, 24: 504-516 [44] Fisher WD. On grouping for maximum homogeneity. Journal of the American Statistical Association, 1958, 53: 789-798 [45] Reis GC, Beasley CR, Simeone D. First insights into the association of complex hydraulic variables with the abundance and richness of Elmidae (Coleoptera) in the Amazon. Ecohydrology & Hydrobiology, 2023, 23: 400-407 [46] Li CJ, Fu BJ, Wang S, et al. Drivers and impacts of changes in China’s drylands. Nature Reviews Earth & Environment, 2021, 2: 858-873 [47] 邱杨, 王兆鹏, 张冬有, 等. 大兴安岭北部不同树种径向生长对气温突变的响应. 应用生态学报, 2024, 35(11): 2933-2941 [48] 钱芮, 段新宇, 杨海军, 等. 大兴安岭林草交错带草地退化成因分析及其应对策略. 中国科学: 生命科学, 2022, 52(12): 1883-1896 [49] Du JQ, Quan ZJ, Fang SF, et al. Spatiotemporal changes in vegetation coverage and its causes in China since the Chinese economic reform. Environmental Science and Pollution Research, 2020, 27: 1144-1159 [50] Zhao HX, Gu BJ, Lindley S, et al. Regulation factors driving vegetation changes in China during the past 20 years. Journal of Geographical Sciences, 2023, 33: 508-528 |