[1] Kumari P, Wani IA, Khan S, et al. Modeling of Vale-riana wallichii habitat suitability and niche dynamics in the Himalayan Region under anticipated climate change. Biology, 2022, 11: 498 [2] Jones KR, Watson JE, Possingham HP, et al. Incorporating climate change into spatial conservation prioritisation: A review. Biological Conservation, 2016, 194: 121-130 [3] 王东升, 赵伟, 程蓓蓓, 等. 基于MaxEnt模型的中国山楂潜在适生区. 林业科学, 2022, 58(7): 43-50 [4] Bao R, Li XL, Zheng JH. Feature tuning improves MAXENT predictions of the potential distribution of Pedicularis longiflora Rudolph and its variant. PeerJ, 2022, 10: 13337 [5] Buebos-esteve DE, Mamasig GDNS, Ringor AMD, et al. Modeling the potential distribution of two immortality flora in the Philippines: Applying MaxEnt and GARP algorithms under different climate change scenarios. Modeling Earth Systems and Environment, 2023, 9: 2857-2876 [6] 王森源, 宝秋利, 包玉英, 等. 基于MaxEnt模型的蒙古白丽蘑适生区预测. 菌物学报, 2023, 42(10): 2141-2151 [7] 王庆莉, 王茹琳, 张利平, 等. 基于MaxEnt模型的川西高原松茸气候生态适宜性与潜在分布. 应用生态学报, 2021, 32(7): 2525-2534 [8] Wang XH, Yang ZL, Li YC, et al. Russula griseo-carnosa sp nov (Russulaceae, Russulales), a commercially important edible mushroom in tropical China: Mycorrhiza, phylogenetic position, and taxonomy. Nova Hedwigia, 2009, 88: 269-278 [9] 冯云利, 方媛, 余金凤, 等. 灰肉红菇遗传多样性及遗传分化. 食用菌学报, 2020, 27(3): 7-15 [10] 禹飞. 灰肉红菇多组学特征分析及其与根际微生物的互作. 博士论文. 北京: 中国林业科学研究院, 2020 [11] 刘远超. 灰肉红菇多组学共生特性研究. 博士论文. 广州: 华南理工大学, 2022 [12] Chen XH, Xia LX, Zhuo HB, et al. Chemical composition and antioxidant activities of Russula griseocarnosa sp. nov. Journal of Agricultural and Food Chemistry, 2010, 58: 6966-6971 [13] 陈新华. 广东商品红菇形态和分子鉴定、营养成分分析及其生物活性研究. 博士论文. 长沙: 中南大学, 2010 [14] 中华人民共和国生态环境部, 中国科学院. 中国生物多样性红色名录-大型真菌卷. 北京: 生态环境部, 2018 [15] 许旭萍, 李惠珍, 黄德鑫. 红菇生态的研究. 中国食用菌, 2001(2): 25-27 [16] 钱建新, 陈仁毅, 张惠兰. 正红菇的生长环境研究. 福建林业科技, 2003(4): 52-54 [17] 龚辉. 闽北正红菇宿地森林群落主要种群高度生态位. 北华大学学报: 自然科学版, 2020, 21(6): 812-817 [18] 祁亮亮, 吴小建, 李俐颖, 等. 灰肉红菇与其相似类群子实体下土壤真菌多样性探究. 热带作物学报, 2022, 43(2): 430-437 [19] Boria R, Olson L, Goodman S, et al. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 2014, 275: 73-77 [20] Wu TW, Lu YX, Fang YJ, et al. The Beijing climate center climate system model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geoscientific Model Development, 2019, 12: 1573-1600 [21] 陈禹锦, 于芬, 国春策, 等. 基于MaxEnt生态位模型的毛竹全球潜在适生区预测与分析. 世界竹藤通讯, 2024, 22(5): 47-58 [22] He WP, Zhao SS, Wan SQ, et al. Whether the updates of dynamical processes can improve the performance of BCC-CSM model to reproduce the long-range correlation of the daily temperature? International Journal of Climatology, 2023, 43: 4368-4378 [23] 王艳君, 高泰, 石娟, 等. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析. 北京林业大学学报, 2021, 43(9): 59-69 [24] Dormann CF, Elith J, Bacher S, et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 2013, 36: 27-46 [25] 严晗, 孙刚, 马雪君, 等. 新疆大天鹅冬季适宜生境预测与保护空缺分析. 生态学报, 2025, 45(10): 4987-4999 [26] Riahi K, van Vuuren DP, Kriegler E, Edmonds, et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 2017, 42: 153-168 [27] 张辉盛, 徐琳, 吕韦韦, 等. 扶桑绵粉蚧多维气候生态位保守性与入侵风险. 应用生态学报, 2023, 34(6): 1649-1658 [28] Morales NS, Fernández IC, Baca GV. MaxEnt’s para-meter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ, 2017, 5: e3093 [29] 徐艳玲, 秦誉嘉, 张源, 等. 基于MaxEnt模型预测外来入侵植物刺果瓜在中国的潜在地理分布. 植物保护学报, 2022, 49(5): 1440-1449 [30] 吴卓瑾, 梁特, 石娟, 等. 基于MaxEnt模型预测梨火疫病菌的潜在地理分布. 植物保护学报, 2023, 50 (6): 1518-1527 [31] 贾栋, 徐朝茜, 刘艳红, 等. 基于MaxEnt模型预测苹红缢管蚜在中国的适生区. 植物保护学报, 2020, 47(3): 528-536 [32] 梁特, 王清栋, 辛本花, 等. 基于MaxEnt模型预测欧洲榆小蠹的全球潜在地理分布. 植物保护学报, 2023, 50(6): 1499-1507 [33] Pearson RG, Raxworthy CJ, Raxworthy M, et al. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 2007, 34: 102-117 [34] Yang XQ, Kushwaha S, Saran S, et al. Maxent mode-ling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 2013, 51: 83-87 [35] 赵光华. 气候变化背景下我国酸枣空间分布格局演变及影响因素分析. 博士论文. 太原: 山西师范大学, 2020 [36] 江南子英, 杨沆鑫, 李超, 等. 基于MaxEnt模型对蜂巢奇露尾甲在中国的潜在分布研究. 环境昆虫学报, 2023, 45(5): 1236-1244 [37] Shi XD, Wang JW, Zhang L, et al. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model. Ecological Indicators, 2023, 148: 110093 [38] Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 2003, 421: 37-42 [39] Broennimann O, Thuiller W, Hughes G, et al. Do geographic distribution, niche property and life form explain plants’ vulnerability to global change? Global Change Biology, 2006, 12: 1079-1093 [40] Chen IC, Hill JK, Ohlemüller Roy DB, et al. Rapid range shifts of species associated with high levels of climate warming. Science, 2011, 333: 1024-1026 [41] Li JY, Chang H, Liu T, et al. The potential geogra-phical distribution of Haloxylon across Central Asia under climate change in the 21st century. Agricultural and Forest Meteorology, 2019, 275: 243-254 [42] Hickling R, Roy DB, Hill JK, et al. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 2006, 12: 450-455 [43] Bertrand R, Lenoir J, Piedallu C, et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature, 2011, 479: 517-520 [44] 戴旻峻, 李鑫玉, 王敏求, 等. 柳杉潜在适生区预测及气候变化对其分布的影响. 西北林学院学报, 2022, 37(6): 26-33 [45] 曾广宇, 赵志珩, 高中海, 等. 林地调控对灰肉红菇的增产作用. 食用菌学报, 2021, 28(2): 108-112 [46] Liu YC, Yong TQ, Cai MJ, et al. Exploring the potential of Russula griseocarnosa: A molecular ecology perspective. Agriculture, 2024, 14: 879 [47] Li Z, Liang RX, Yu F. Soil fungal diversity and community structure of Russula griseocarnosa from different sites. Microorganisms, 2025, 13: 490 [48] Oh SY, Fong JJ, Park MS, et al. Distinctive feature of microbial communities and bacterial functional profiles in Tricholoma matsutake dominant soil. PLoS One, 2016, 11(12): e0168573 [49] Yu F, Liang JF, Song J, et al. Bacterial community selection of Russula griseocarnosa mycosphere soil. Frontiers in Microbiology, 2020, 11: 34 [50] Avis PG, McLaughlin DJ, Dentinger BC, et al. Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytologist, 2003, 160: 239-253 [51] 李光超, 杨慧, 张春来, 等. 典型岩溶区板栗树下土壤pH值与盐基饱和度关系研究. 中国水土保持, 2012(8): 49-52 |