欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2026, Vol. 37 ›› Issue (1): 125-135.doi: 10.13287/j.1001-9332.202601.013

• 研究论文 • 上一篇    下一篇

滴灌与间作对盐碱地水盐运移及高粱产量的影响

黄霖锋1, 陈利荣2, 张承焱3, 王丽娜2, 陈龙2, 王珍2*, 刘吉利2, 张峰举2   

  1. 1宁夏大学农学院, 银川 750021;
    2宁夏大学生态环境学院, 银川 750021;
    3宁夏大学化学化工学院, 银川 750021
  • 收稿日期:2025-03-11 修回日期:2025-11-01 发布日期:2026-07-18
  • 通讯作者: *E-mail: wz305nd@nxu.edu.cn
  • 作者简介:黄霖锋, 男, 2000年生, 硕士研究生。主要从事盐碱地作物高产栽培研究。E-mail: 2628491989@qq.com
  • 基金资助:
    国家重点研发计划项目(2021YFD1900603)、国家自然科学基金项目(52360029)和宁夏自然科学基金项目(2023AAC03111)

Effects of drip irrigation and intercropping on soil water-salt dynamics and sorghum yield in saline-alkali land

HUANG Linfeng1, CHEN Lirong2, ZHANG Chengyan3, WANG Lina2, CHEN Long2, WANG Zhen2*, LIU Jili2, ZHANG Fengju2   

  1. 1School of Agriculture, Ningxia University, Yinchuan 750021, China;
    2School of Ecology and Environment, Ningxia University, Yinchuan 750021, China;
    3School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
  • Received:2025-03-11 Revised:2025-11-01 Published:2026-07-18

摘要: 为改善宁夏引黄灌区土壤盐碱化导致的作物产量降低问题,本研究采用裂区设计,以3个滴灌处理[W1:春灌(畦灌)180 mm,生育期滴灌420 mm;W2:春灌162 mm,生育期滴灌378 mm;W3:春灌144 mm,生育期滴灌336 mm]为主处理,2种种植模式(T1:单作高粱,T2:高粱-田菁间作)为副处理,分析滴灌量和间作对土壤含水率、含盐量、脱盐率及高粱生长和产量的影响,并构建偏最小二乘路径模型(PLS-PM)分析水盐运移规律及协同效应。结果表明: 苗期和拔节期,在W2和W3滴灌量下间作较单作模式40~80 cm土层土壤含水率提高了1.6%~8.5%。含盐量高峰阶段(孕穗期),W1和W2滴灌量下间作较单作模式对0~40 cm土层表现出显著抑盐效果,含盐量降低幅度达4.1%~35.5%。两种植模式下高粱成熟期土壤0~80 cm土层盐分淋洗效率均以W2最佳。灌浆期,W2T2处理的株高较W2T1降低了13.6%;而在W1、W2和W3滴灌量下,间作较单作模式的高粱茎粗分别提高了2.2%、7.7%和5.5%。孕穗期,W1和W2滴灌量下,间作较单作模式的高粱叶面积指数分别提高6.6%和7.7%,叶绿素含量(SPAD值)分别提升28.2%和3.3%;但在W3下,间作较单作模式高粱的SPAD值下降。各滴灌量下间作高粱产量较单作提升3.9%~7.3%,其中以W2T2处理产量最高,达7865.6 kg·hm-2,显著高于W1T2和W3T2。结构方程模型分析表明,间作增强了光合结构基础(叶绿素含量和叶面积),促进同化物向籽粒分配,并通过种间互补效应弱化了水分影响。高粱间作田菁结合生育期滴灌378 mm显著提升了盐分淋洗效率和深层水分利用,促进了高粱产量提高,是本试验条件下节水抑盐和增产的最佳组合。

关键词: 间作, 滴灌, 水盐运移, 结构方程模型, 高粱

Abstract: To mitigate the reduction of crop yield caused by soil salinization in the Ningxia Yellow River Irrigation District, we implemented an experiment with split-plot design to evaluate the effects of three drip irrigation regimes (W1: spring border irrigation 180 mm + growing-season drip irrigation 420 mm; W2: 162 mm + 378 mm; and W3: 144 mm + 336 mm) and two planting configurations (T1: sorghum monoculture; T2: sorghum-sesbania intercropping) on soil water content, salinity, desalination efficiency, sorghum growth, and yield. We applied partial least squares path model (PLS-PM) to analyze the dynamics of water-salt transport and the synergies of intercropping. Results showed that during the seedling and jointing stages, intercropping (T2) under the W2 and W3 increased soil water content in the 40-80 cm layer by 1.6%-8.5% compared to monoculture (T1). During the grouting stage, T2 under W1 and W2 significantly reduced soil salinity in 0-40 cm layer by 4.1%-35.5%. W2 was the optimal irrigation regime for salt leaching efficiency across both planting patterns. Moreover, intercropping (W2T2) enhanced sorghum growth in the pustulation period, with shoot length reduced by 13.6% compared to W2T1. Compared with T1, stem thickness of T2 elevated by 2.2%, 7.7%, and 5.5% for W1, W2, and W3, respectively. Du-ring the booting stage, sorghum under T2 showed enhanced leaf area index by 6.6% and 7.7% and chlorophyll contents (SPAD values) by 28.2% and 3.3% under W1 and W2, respectively compared to T1, while a reduced SPAD was observed under W3 treatment. Overall, T2 boosted sorghum yield by 3.9%-7.3%, with W2T2 yielding 7865.6 kg·hm-2 and significantly higher than that of W1T2 and W3T2. Furthermore, structural equation modeling results indicated that T2 strengthened photosynthetic capacity, enhanced grain assimilate allocation, and mitigated water stress via interspecific resource complementation. The combination of sorghum-sesbania intercropping with growing-season drip irrigation 378 mm maximized salt leaching, deep-water utilization, and crop yield, offering a promising strategy for water-saving salt management and productivity enhancement in saline-alkali environment.

Key words: intercropping, drip irrigation, water and salt migration, structural equation model, sorghum