欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (10): 3026-3032.doi: 10.13287/j.1001-9332.202510.001

• 研究报告 • 上一篇    下一篇

杉木-闽楠近自然改造下杉木大径材出材量的影响因子

江怡航1,2, 刘振华3, 张建国1, 张雄清1,2*   

  1. 1中国林业科学研究院林业研究所, 林木资源高效生产全国重点实验室/国家林业和草原局林木培育重点实验室, 北京 100091;
    2南京林业大学南方现代林业协同创新中心, 南京 210037;
    3湖南林业科学院, 长沙 410000
  • 收稿日期:2025-04-15 修回日期:2025-07-17 发布日期:2026-05-04
  • 通讯作者: *E-mail: xqzhang85@caf.ac.cn
  • 作者简介:江怡航, 女, 1999年生, 博士研究生。主要从事杉木人工林定向培育研究。E-mail: yhjiang99@126.com
  • 基金资助:
    十四五国家重点研发计划课题(2021YFD2201304)

Influencing factors of large-diameter timber yield of Cunninghamia lanceolata under the close-to-nature silviculture stands mixed with Phoebe bournei

JIANG Yihang1,2, LIU Zhenhua3, ZHANG Jianguo1, ZHANG Xiongqing1,2*   

  1. 1State Key Laboratory of Efficient Production of Forest Resource/Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
    2Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
    3Hunan Academy of Forestry, Changsha 410000, China
  • Received:2025-04-15 Revised:2025-07-17 Published:2026-05-04

摘要: 杉木是我国南方人工林的主要用材树种,提升其大径材出材量对实现人工林高质量发展至关重要。本研究以湖南省临武县不同杉木-闽楠混交比例的近自然改造林为对象,构建结构方程模型,解析林分生长、空间结构与林下植被多样性对杉木大径材出材量的影响机制。结果表明:模型拟合良好(R2=0.729)。杉木胸径是影响大径材出材量的关键直接因子(路径系数=0.82, P<0.001),冠幅(路径系数= 0.36, P<0.05)和适度的竞争强度(以Hegyi竞争指数表征,路径系数=0.33)亦具有正向作用。杉木保留密度(路径系数=-1.19, P<0.001)、树高结构异质性(以基尼系数表征,路径系数=-0.45)及灌木层多样性(Simpson指数,路径系数=-0.34, P<0.05)主要通过抑制杉木胸径生长间接降低大径材出材量。草本层多样性与草本生物量(路径系数均为0.16)则表现出正向的间接效应。因此,调控杉木保留密度与空间结构(如降低杉木密度、减小保留木大小比数等)、促进保留木径向生长,并维持合理的林下植被结构(如适度发展草本层、控制灌木层),是提升杉木-闽楠近自然改造林分中杉木大径材出材量的关键路径。

关键词: 杉木, 大径材出材量, 结构方程模型, 空间结构, 林下植被, 近自然改造

Abstract: Cunninghamia lanceolata is the primary timber species in artificial forests in southern China. Increasing the large-diameter timber yield of this species is crucial for achieving high-quality development of artificial forests. We focused on close-to-nature stands of C. lanceolata-Phoebe bournei mixed forests with varying mixing ratios in Linwu County, Hunan Province, and constructed a structural equation model to analyze the mechanisms by which stand growth, spatial structure, and understory vegetation diversity influencing the yield of large-diameter timber. The results showed that the model exhibited a good fit (R2=0.729). Diameter at breast height of C. lanceolata was the key direct factor affecting the yield of large-diameter timber (path coefficient=0.82, P<0.001), and crown width (path coefficient=0.36, P<0.05) and moderate competition intensity (represented by Hegyi competition index, path coefficient=0.33) had positive effects. In contrast, retained density of C. lanceolata (path coefficient=-1.19, P<0.001), tree height structure heterogeneity (represented by Gini coefficient, path coefficient=-0.45), and shrub layer diversity (Simpson index, path coefficient=-0.34, P<0.05) indirectly reduced the large-diameter timber yield by limiting the increases of diameter at breast height. The diversity and biomass of the herbaceous layer (path coefficient=0.16) exhibited positive indirect effects. In conclusion, regulating retained density and spatial structure of C. lanceolata (e.g., reducing density and size ratio), promoting radial growth of retained trees, and maintaining a balanced understory composition (e.g., promoting herb layer development and controlling shrub layer) are key strategies for enhancing the yield of large-diameter C. lanceolata timber in close-to-nature stands of C. lanceolata-P. bournei mixed plantations.

Key words: Cunninghamia lanceolata, large-diameter timber, structural equation model, spatial structure, understory vegetation, close-to-nature silviculture