应用生态学报 ›› 2021, Vol. 32 ›› Issue (3): 1023-1032.doi: 10.13287/j.1001-9332.202103.018
尚天浩1, 陈睿华1, 张俊华2*, 孙媛1, 贾萍萍1
收稿日期:
2020-10-05
接受日期:
2020-12-29
出版日期:
2021-03-15
发布日期:
2021-09-15
通讯作者:
* E-mail: zhangjunhua728@163.com
作者简介:
尚天浩, 男, 1994年生, 硕士研究生。主要从事精准农业与土壤质量提升的研究。E-mail: 3298607005@qq.com
基金资助:
SHANG Tian-hao1, CHEN Rui-hua1, ZHANG Jun-hua2*, SUN Yuan1, JIA Ping-ping1
Received:
2020-10-05
Accepted:
2020-12-29
Online:
2021-03-15
Published:
2021-09-15
Contact:
* E-mail: zhangjunhua728@163.com
Supported by:
摘要: 为了探讨不同传感器对土壤Na+含量的估测能力,本研究以宁夏银北地区典型样点土壤实测光谱和Sentinel-2B影像光谱为对象,运用逐步回归(SR)和主成分回归分析(PCA)方法对光谱数据进行敏感参量筛选,然后采用偏最小二乘回归(PLSR)、支持向量机(SVM)和反向传播神经网络模型(BPNN)分别建立实测光谱和影像数据的土壤Na+含量估算模型。结果表明: 除Band9外,实测重采样数据与影像数据呈极显著相关。基于SR筛选方式建立的模型估算精度普遍高于PCA(SVM模型除外),PCA-SVM模型为影像最佳Na+含量估算模型,预测精度为0.792;SR-BPNN模型为实测最佳Na+含量估算模型,预测精度达到0.908。经重采样实测光谱模型校正后的SR-PLSR影像光谱土壤Na+含量估算模型精度从0.481提高到0.798,有效提高了较大尺度下的土壤Na+含量估算精度。本研究实现了遥感监测土壤Na+含量由点向面的空间转换,为Sentinel-2B影像监测盐渍化土壤Na+含量提供了科学参考。
尚天浩, 陈睿华, 张俊华, 孙媛, 贾萍萍. 基于实测高光谱与Sentinel-2B数据的银北土壤Na+含量估测[J]. 应用生态学报, 2021, 32(3): 1023-1032.
SHANG Tian-hao, CHEN Rui-hua, ZHANG Jun-hua, SUN Yuan, JIA Ping-ping. Estimation of soil Na+ content based on measured hyperspectral and Sentinel-2B data in northern Ningxia, China[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 1023-1032.
[1] | 曹琪琪, 王若水, 肖辉杰, 等. 宁夏引黄灌区次生盐碱地紫穗槐茎干液流分析. 应用生态学报, 2018, 29(7): 2347-2354 [Cao Q-Q, Wang R-S, Xiao H-J, et al. Sap flow of Amorpha fruticosa in the secondary saline-alkali land in Ningxia Yellow River Irrigation. Chinese Journal of Applied Ecology, 2018, 29(7): 2347-2354] |
[2] | 张俊华, 贾萍萍, 孙媛, 等. 基于高光谱特征的盐渍化土壤不同土层盐分离子含量预测. 农业工程学报, 2019, 35(12): 106-115 [Zhang J-H, Jia P-P, Sun Y, et al. Prediction of salinity parameters in different saline soil layers based on hyperspectral data. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 106-115] |
[3] | 郭全恩. 土壤盐分离子迁移及其分异规律对环境因素的响应机制. 博士论文. 杨凌: 西北农林科技大学, 2010 [Guo Q-E. The Response Mechanism of Soil Sailt ions Transfer and Diversity Rule to Environment Factor. PhD Thesis. Yangling: Northwest A&F University, 2010] |
[4] | Jiang H, Shu H, Lei L, et al. Estimating soil salt components and salinity using hyperspectral remote sensing data in an arid area of China. Journal of Applied Remote Sensing, 2017, 11: 16043 |
[5] | Srivastava R, Sethi M, Yadav RK, et al. Visible-near infrared reflectance spectroscopy for rapid characterization of salt-affected soil in the Indo-gangetic plains of Haryana, India. Journal of the Indian Society of Remote Sensing, 2016, 45: 307-315 |
[6] | Peng J, Ji W, Ma Z, et al. Predicting total dissolved salts and soluble ion concentrations in agricultural soils using portable visible near-infrared and mid-infrared spectrometers. Biosystems Engineering, 2015, 152: 94-103 |
[7] | 刘亚秋, 陈红艳, 王瑞燕, 等. 基于可见/近红外光谱的黄河口区土壤盐分及其主要离子的定量分析. 中国农业科学, 2016, 49(10): 1925-1935 [Liu Y-Q, Chen H-Y, Wang R-Y, et al. Quantitative analysis of soil salt and its main ions based on visible/near infrared spectroscopy in estuary area of Yellow River. Scientia Agricultura Sinica, 2016, 49(10): 1925-1935] |
[8] | 屈永华, 段小亮, 高鸿永, 等. 内蒙古河套灌区土壤盐分光谱定量分析研究. 光谱学与光谱分析, 2009, 29(5): 1362-1366 [Qu Y-H, Duan X-L, Gao H-Y, et al. Quantitative retrieval of soil salinity using hyperspectral data in the region of Hetao irrigation district, Inner Mongolia. Spectroscopy and Spectral Analysis, 2009, 29(5): 1362-1366] |
[9] | 马利芳, 熊黑钢, 张芳. 基于野外VIS-NIR光谱的土壤盐分主要离子预测. 土壤, 2020, 52(1): 188-194 [Ma L-F, Xiong H-G, Zhang F. Prediction of major ions in soil salinity based on field Vis-NIR spectroscopy. Soils, 2020, 52(1): 188-194] |
[10] | 王海江, 蒋天池, Yunger JA, 等. 基于支持向量机的土壤主要盐分离子高光谱反演模型. 农业机械学报, 2018, 49(5): 263-270 [Wang H-J, Jiang T-C, Yunger JA, et al. Hyperspectral inverse model for soil salt ions based on support vector machine. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 263-270] |
[11] | 田安红, 付承彪, 熊黑钢, 等. 基于BP神经网络的不同人为干扰强度下盐渍土SO42-定量分析. 中国生态农业学报, 2020, 28(2): 296-304 [Tian A-H, Fu C-B, Xiong H-G, et al. Quantitative analysis of SO42- in saline soil under areas disturbed and undisturbed by human using BP neural network. Chinese Journal of Eco-Agriculture, 2020, 28(2): 296-304] |
[12] | Zovko M, Romic D, Colombo C, et al. A geostatistical Vis-NIR spectroscopy index to assess the incipient soil salinization in the Neretva River valley, Croatia. Geoderma, 2018, 332: 60-72 |
[13] | Hendawy SE, Suhaibani NA, Hassan WM, et al. Evalua-tion of wavelengths and spectral reflectance indices for highthroughput assessment of growth, water relations and ion contents of wheat irrigated with saline water. Agricultural Water Management, 2019, 212: 358-377 |
[14] | 邓来飞, 张飞, 齐亚霄, 等. 基于参数优化SVM方法识别盐生植被钠离子光谱特征. 光谱学与光谱分析, 2020, 40(1): 247-254 [Deng L-F, Zhang F, Qi Y-X, et al. Identification of sodium ion spectral characteri-stics of halophytes based on parameter optimized SVM method. Spectroscopy and Spectral Analysis, 2020, 40(1): 247-254] |
[15] | 刘焕军, 张美薇, 杨昊轩, 等. 多光谱遥感结合随机森林算法反演耕作土壤有机质含量. 农业工程学报, 2020, 36(10): 134-140 [Liu H-J, Zhang M-W, Yang H-X, et al. Invertion of cultivated soil organic matter content combining multi-spectral remote sensing and random forest algorithm. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10): 134-140] |
[16] | Farahmand N, Sadeghi V, Farahmand S. Estimating soil salinity in the dried lake bed of Urmia Lake using optical Sentinel-2B images and multivariate linear regression models. Journal of the Indian Society of Remote Sensing, 2020, 48: 675-687 |
[17] | 姜红, 玉素甫江·如素力, 拜合提尼沙·阿不都克日木, 等. 基于支持向量机回归算法的土壤水分光学与微波遥感协同反演. 地理与地理信息科学, 2017, 33(6): 30-36 [Jiang H, Rusuli Y, Abudoukerimu B, et al. Soil moisture retrieval by synergizing optical and microwave remote sensing data based on support vector machine regression algorithm. Geography and Geo-Information Science, 2017, 33(6): 30-36] |
[18] | Chemura A, Mutanga O, Dube T. Separability of coffee leaf rust infection levels with machine learning methods at Sentinel-2 MSI spectral resolutions. Precision Agriculture, 2016, 18: 859-881 |
[19] | Frampton WJ, Dash J, Watmough G, et al. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82: 83-92 |
[20] | 贾萍萍, 张俊华, 孙媛, 等. 基于实测高光谱和Landsat 8 OLI影像的土壤盐化和碱化程度反演研究. 土壤通报, 2020, 51(3): 511-520 [Jia P-P, Zhang J-H, Sun Y, et al. Inversion of soil salinity and pH degree based on measured hyperspectral and Landsat 8 OLI image. Chinese Journal of Soil Science, 2020, 51(3): 511-520] |
[21] | Fourati HT, Bouaziz M, Benzina M, et al. Modeling of soil salinity within a semi-arid region using spectral ana-lysis. Arabian Journal of Geosciences, 2015, 8: 11175-11182 |
[22] | 贾萍萍, 孙媛, 尚天浩, 等. 基于高光谱和Landsat-8 OLI影像的盐渍化土壤水盐估算模型构建. 生态学杂志, 2020, 39(7): 2456-2466 [Jia P-P, Sun Y, Shang T-H, et al. Estimation models of soil water-salt based on hyperspectral and Landsat-8 OLI image. Chinese Journal of Ecology, 2020, 39(7): 2456-2466] |
[23] | 梁静, 丁建丽, 王敬哲, 等. 基于反射光谱与Landsat 8 OLI多光谱数据的艾比湖湿地土壤盐分估算.土壤学报, 2019, 56(2): 320-330 [Liang J, Ding J-L, Wang J-Z, et al. Quantitative estimation and mapping of soil salinity in the Ebinur Lake wetland based on Vis-NIR reflectance and Landsat 8 OLI data. Acta Pedologica Sinica, 2019, 56(2): 320-330] |
[24] | 徐夕博, 吕建树, 吴泉源, 等. 基于PCA-MLR和PCA-BPN的莱州湾南岸滨海平原土壤有机质高光谱预测研究. 光谱学与光谱分析, 2018, 38(8): 2556-2562 [Xu X-B, Lyu J-S, Wu Q-Y, et al. Prediction of soil organic matter based PCA-MLR and PCA-BPN algorithm using field VNIR spectroscopy in coastal soils of southern Laizhou Bay. Spectroscopy and Spectral Analysis, 2018, 38(8): 2556-2562] |
[25] | 王海峰. 基于高光谱遥感的土壤水盐监测模型研究. 硕士论文. 杨凌: 西北农林科技大学, 2019 [Wang H-F. Hyperspectral Remote Sensing Based Models for Soil Moisture and Salinity Prediction. Master Thesis. Yangling: Northwest A&F University, 2019] |
[26] | Kennard RW, Stone LA. Computer aided design of experiments. Technometrics, 1969, 11: 137-148 |
[27] | 孙亚楠, 李仙岳, 史海滨, 等. 河套灌区土壤水溶性盐基离子高光谱综合反演模型. 农业机械学报, 2019, 50(5): 344-355 [Sun Y-N, Li X-Y, Shi H-B, et al. Hyperspectral integrated inverse model for water-soluble salt ions content in Hetao irrigation district, Inner Mongolia. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 344-355] |
[28] | Rossel RAV, Taylor HJ, Mcbratney AB. Multivariate calibration of hyperspectral γ-ray energy spectra for proximal soil sensing. European Journal of Soil Science, 2010, 58: 343-353 |
[29] | 李鑫星, 曹闪闪, 白雪冰, 等. 多光谱技术在土壤成分含量检测中的研究进展. 光谱学与光谱分析, 2020, 40(7): 2042-2047 [Li X-X, Cao S-S, Bai X-B, et al. Research progress of multi-spectral technique in the determination of soil component content. Spectroscopy and Spectral Analysis, 2020, 40(7): 2042-2047] |
[30] | 卢志宏, 刘辛瑶, 常书娟, 等. 基于BP神经网络的草原矿区表层土壤N/P高光谱反演模型. 草业科学, 2018, 35(9): 2127-2136 [Lu Z-H, Liu X-Y, Chang S-J, et al. Hyperspectral inversion of the surface soil N/P ratio in a grassland mining area based on the BP neural network. Pratacultural Science, 2018, 35(9): 2127-2136] |
[31] | 张飞, 塔西甫拉提·特依拜, 丁建丽, 等. 实测端元光谱和多光谱图像之间的模拟与细分. 光电工程, 2012, 39(6): 62-70 [Zhang F, Teyibai T, Ding J-L, et al. Simulation and subsection between fields measured endmember spectrum and multi-spectrum image of TM. Opto-Electronic Engineering, 2012, 39(6): 62-70] |
[32] | 李严洁. 多元回归中的多重共线性及其存在的后果. 中国卫生统计, 1992, 9(1): 24-27 [Li Y-J. Multicollinearity and its consequence in multiple regression. Chinese Journal of Health Statistics, 1992, 9(1): 24-27] |
[33] | 刘国旗. 多重共线性的产生原因及其诊断处理. 合肥工业大学学报: 自然科学版, 2001, 24(4): 607-610 [Liu G-Q. Cause of multi-collinearity and its diagnosis and treatment. Journal of Hefei University of Technology: Natural Science, 2001, 24(4): 607-610] |
[34] | 张智韬, 王海峰, Arnon K, 等. 基于岭回归的土壤含水率高光谱反演研究. 农业机械学报, 2018, 49(5): 240-248 [Zhang Z-T, Wang H-F, Arnon K, et al. Inversion of soil moisture content from hyperspectra based on ridge regression. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 240-248] |
[35] | 陈俊英, 王新涛, 张智韬, 等. 基于无人机-卫星遥感升尺度的土壤盐渍化监测方法. 农业机械学报, 2019, 50(12): 161-169 [Chen J-Y, Wang X-T, Zhang Z-T, et al. Soil salinization monitoring method based on UAV-Satellite remote sensing scale-up. Transa-ctions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 161-169] |
[36] | Vigneau E, Dvaux MF, Qannari EM. Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration. Journal of Chemometrics, 1997, 11: 239-249 |
[37] | Kulesa AB, Krzywinski M, Blainey PC, et al. Sampling distributions and the bootstrap. Nature Methods, 2015, 12: 477-478 |
[38] | 王明宽, 莫宏伟, 陈红艳. 基于多光谱影像反演土壤盐分的建模方法研究. 土壤通报, 2016, 47(5): 1036-1041 [Wang M-K, Mo H-W, Chen H-Y. Study on model method of inversion of soil salt based on multispectral image. Chinese Journal of Soil Science, 2016, 47(5): 1036-1041] |
[39] | 王泽平. 基于GA-BP与多隐层BP网络模型的水质预测及比较分析. 水资源与水工程学报, 2013, 24(3): 154-160 [Wang Z-P. Prediction and comparative analysis of water quality based on GA-BP and multi-hidden-layer BP network model. Journal of Water Resources and Water Engineering, 2013, 24(3): 154-160] |
[40] | 袁婕, 张飞, 葛翔宇, 等. 地理加权回归模型结合高光谱反演盐生植物叶片盐离子含量. 农业工程学报, 2019, 35(10): 115-124 [Yuan J, Zhang F, Ge X-Y, et al. Leaf salt ion content estimation of halophyte plants based on geographically weighted regression model combine with hyperspectral data. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 115-124] |
[41] | 张雅莉, 塔西甫拉提·特依拜, 阿尔达克·克里木, 等. 基于Landsat8 OLI影像光谱的土壤盐分估算模型研究. 国土资源遥感, 2018, 30(1): 87-94 [Zhang Y-L, Tiyip T, Kelimu A, et al. Estimation model of soil salinization based on Landsat8 OLI image spectrum. Remote Sensing for Land & Resources, 2018, 30(1): 87-94] |
[42] | 曹雷, 丁建丽, 玉米提·哈力克, 等. 基于国产高分一号卫星数据的区域土壤盐渍化信息提取与建模. 土壤学报, 2016, 53(6): 1399-1409 [Cao L, Ding J-L, Halike U, et al. Extraction and modeling of regional soil salinization based on data from GF-1 satellite. Acta Pedologica Sinica, 2016, 53(6): 1399-1409] |
[43] | 阿尔达克·克里木, 塔西甫拉提·特依拜, 张东, 等. 基于高光谱的ASTER影像土壤盐分模型校正及验证. 农业工程学报, 2016, 32(12): 144-150 [Kelimu A, Tiyip T, Zhang D, et al. Calibration and validation of soil salinity estimation model based on measured hyperspectral and Aster image. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(12): 144-150] |
[44] | 姚远, 丁建丽, 阿尔达克·克里木, 等. 基于实测高光谱和电磁感应数据的区域土壤盐渍化遥感监测研究. 光谱学与光谱分析, 2013, 33(7): 1917-1921 [Yao Y, Ding J-L, Kelimu A, et al. Research on remote sensing monitoring of soil salinization based on measured hyperspectral and EM38 data. Spectroscopy and Spectral Analysis, 2013, 33(7): 1917-1921] |
[1] | 曹华燕, 苗铮, 郝元朔, 董利虎. 基于beta回归的长白落叶松树干含水率预测模型 [J]. 应用生态学报, 2024, 35(3): 587-596. |
[2] | 胡爱莲, 杨娟, 刘宝林, 邹瑜. 广西沿海红树林潜在适宜区变化及互花米草入侵威胁的预测 [J]. 应用生态学报, 2024, 35(3): 669-677. |
[3] | 李香伶, 陈奉献, 陈希娟. 基于XGBoost模型的土壤中阿特拉津降解预测 [J]. 应用生态学报, 2024, 35(3): 789-796. |
[4] | 曹晓梅, 苗铮, 郝元朔, 董利虎. 基于树种分类的帽儿山阔叶混交林树高-胸径模型 [J]. 应用生态学报, 2024, 35(2): 307-320. |
[5] | 左玉珠, 潘成忠, 马勇星, 马岚. 基于氢氧同位素示踪的黄土区不同植被类型小流域降雨-径流分割 [J]. 应用生态学报, 2024, 35(2): 399-406. |
[6] | 甘文静, 莫上萱, 张建洪, 宋贤威, 冼金梅, 杨露, 农海勤. 北部湾防城河流域水源涵养格局及其对降雨的响应特征 [J]. 应用生态学报, 2024, 35(2): 407-414. |
[7] | 路昌, 蔡雪芹, 郝灿书, 刘玉珍, 王之语, 马亚男. 黄河三角洲高效生态经济区生态系统服务权衡协同关系 [J]. 应用生态学报, 2024, 35(2): 457-468. |
[8] | 袁佳玉, 熊立, 吴志伟, 朱诗豪, 康平, 李顺. 江西省赣州市南康区松材线虫病发生特征 [J]. 应用生态学报, 2024, 35(2): 507-515. |
[9] | 王菲, 周梓涵, 韩冬锐, 王猛, 魏清岗, 骆秀斌, 高瑞, 张卓然, 方经春. 农业灌溉和施肥在陆面过程模型中的参数化方法研究进展 [J]. 应用生态学报, 2024, 35(2): 543-554. |
[10] | 刘亦晟, 侯鹏, 王平, 朱健. 生态系统水源涵养服务功能定量评估方法研究进展 [J]. 应用生态学报, 2024, 35(1): 275-288. |
[11] | 肖晨, 田栋元, 马榕, 董灵波. 兴安落叶松天然林更新数量相容性预测模型 [J]. 应用生态学报, 2023, 34(9): 2345-2354. |
[12] | 杨振康, 杨婉蓉, 刘志娟, 高伟达, 任图生, 沈彦俊, 杨晓光. 气候变化对东北三省土壤风蚀的影响 [J]. 应用生态学报, 2023, 34(9): 2429-2435. |
[13] | 孙龙, 马灵感, 郭妍, 范佳乐, 陈伯轩, 胡同欣. 基于卷积神经网络及气象要素回归法的地表死可燃物含水率预测模型 [J]. 应用生态学报, 2023, 34(9): 2453-2461. |
[14] | 谢卓洪, 雷敏, 刘利杰, 莫燕卿, 战国强, 刘萍. 珠三角城市群景观生态格局评价与优化 [J]. 应用生态学报, 2023, 34(9): 2481-2488. |
[15] | 祁育汀, 张平, 刘雷, 马雪楠, 王欢, 赵娟. 关中平原城市群土地利用结构多情景优化和生态系统服务价值预测 [J]. 应用生态学报, 2023, 34(9): 2507-2517. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 628
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 376
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||