应用生态学报 ›› 2024, Vol. 35 ›› Issue (2): 543-554.doi: 10.13287/j.1001-9332.202402.021
王菲1, 周梓涵1, 韩冬锐1, 王猛1, 魏清岗1, 骆秀斌1, 高瑞1, 张卓然1, 方经春2,3*
收稿日期:
2023-06-14
修回日期:
2023-12-17
出版日期:
2024-02-18
发布日期:
2024-08-18
通讯作者:
*E-mail: fangjc.19b@igsnrr.ac.cn
作者简介:
王菲, 女, 1991年生, 博士, 助理研究员。主要从事陆面过程模型农业模块的发展与应用研究。E-mail: fei1226h@126.com
基金资助:
WANG Fei1, ZHOU Zihan1, HAN Dongrui1, WANG Meng1, WEI Qinggang1, LUO Xiubin1, GAO Rui1, ZHANG Zhuoran1, FANG Jingchun2,3*
Received:
2023-06-14
Revised:
2023-12-17
Online:
2024-02-18
Published:
2024-08-18
摘要: 全球气候变化和人口激增背景下,灌溉和施肥成为保证粮食产量的重要途径,同时也深刻改变着陆地生态系统水循环、能量流动和物质循环过程。在陆面过程模型(LSM)中耦合灌溉和施肥方案对清晰把握陆-气相互作用、保障全球粮食安全有重要意义。本文分别回顾了灌溉和施肥(氮肥)在LSM参数化过程中的3个关键参量(方式、用量和时间)的表达方法,指出了当前受到灌溉和施肥关键参量高时空分辨率数据匮乏的影响,LSM中的灌溉和施肥方案与实际农业生产方式有所偏离,难以充分反映灌溉和施肥对粮食产量、生态环境和局部气候的影响。最后,提出了LSM中灌溉和施肥方案的未来优化方向: 1) 考虑作物间的水分需求差异,对灌溉阈值进行差异化设置,正确评估不同作物的水资源消耗总量和强度;2) 充分利用施肥灌溉的地面观测记录和日益丰富的区域格网数据,发展更加贴合实际农业操作的参数化方案,准确揭示灌溉和施肥的经济、生态和气候等效应;3) 综合作物类型、物候阶段、土壤基础肥力等因素,发展施肥诊断方案作为模型的补充方案,提升模型在氮肥数据匮乏地区的应用性和模拟准确性。
王菲, 周梓涵, 韩冬锐, 王猛, 魏清岗, 骆秀斌, 高瑞, 张卓然, 方经春. 农业灌溉和施肥在陆面过程模型中的参数化方法研究进展[J]. 应用生态学报, 2024, 35(2): 543-554.
WANG Fei, ZHOU Zihan, HAN Dongrui, WANG Meng, WEI Qinggang, LUO Xiubin, GAO Rui, ZHANG Zhuoran, FANG Jingchun. Research progress in parameterizing irrigation and fertilization in land surface model[J]. Chinese Journal of Applied Ecology, 2024, 35(2): 543-554.
[1] 郭建平. 气候变化对中国农业生产的影响研究进展. 应用气象学报, 2015, 26(1): 1-11 [2] Deryng D, Conway D, Ramankutty N, et al. Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters, 2014, 9: 034011 [3] Guo Y, Wu W, Du M, et al. Modeling climate change impacts on rice growth and yield under global warming of 1.5 and 2.0 degrees C in the Pearl River Delta, China. Atmosphere, 2019, 10: 567 [4] 张学珍, 李侠祥, 张丽娟, 等. RCP 8.5气候变化情景下21世纪印度粮食单产变化的多模式集合模拟. 地理学报, 2019, 74(11): 2314-2328 [5] 雷秋良, 徐建文, 姜帅, 等. 气候变化对中国主要作物生育期的影响研究进展. 中国农学通报, 2014, 30(11): 205-209 [6] Portmann FT, Siebert S, Döll P. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 2010, 24: GB1011 [7] Siebert S, Döll P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. Journal of Hydro-logy, 2010, 384: 198-217 [8] FAO. The State of Food Insecurity in the World 2004. Rome, Italy: Food and Agriculture Organization, 2004 [9] Kharbach M, Chfadi T. General trends in fertilizer use in the world. Arabian Journal of Geosciences, 2021, 14: 2577 [10] Davin EL, Seneviratne SI, Ciais P, et al. Preferential cooling of hot extremes from cropland albedo management. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 9757-9761 [11] McDermid S, Nocco M, Lawston-Parker P, et al. Irrigation in the Earth system. Nature Reviews Earth & Environment, 2023, 4: 435-453 [12] Siebert S, Burke J, Faures JM, et al. Groundwater use for irrigation: A global inventory. Hydrology and Earth System Sciences, 2010, 14: 1863-1880 [13] Doll P, Siebert S. Global modeling of irrigation water requirements. Water Resources Research, 2002, 38: 1037 [14] Siebert S, Doll P, Hoogeveen J, et al. Development and validation of the global map of irrigation areas. Hydrology and Earth System Sciences, 2005, 9: 535-547 [15] Liu G, Wang W. Irrigation-induced crop growth enhances irrigation cooling effect over the North China Plain by increasing transpiration. Water Resources Research, 2023, 59: e2022WR034142 [16] Li Y, Guan K, Peng B, et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Global Change Biology, 2020, 26: 3065-3078 [17] Wu L, Feng J, Miao W. Simulating the impacts of irrigation and dynamic vegetation over the North China Plain on regional climate. Journal of Geophysical Research: Atmospheres, 2018, 123: 8017-8034 [18] Zhang X, Ding N, Han S, et al. Irrigation-induced potential evapotranspiration decrease in the Heihe River Basin, Northwest China, as simulated by the WRF model. Journal of Geophysical Research: Atmospheres, 2020, 125: e2019JD031058 [19] Zhao N, Han S, Xu D, et al. Cooling and wetting effects of agricultural development on near-surface atmosphere over Northeast China. Advances in Meteoro-logy, 2016, 2016: 6439276 [20] Liu J, Jin J, Niu GY. Effects of irrigation on seasonal and annual temperature and precipitation over China simulated by the WRF model. Journal of Geophysical Research: Atmospheres, 2021, 126: e2020JD03422 [21] Kang S, Eltahir EAB. Impact of irrigation on regional climate over Eastern China. Geophysical Research Letters, 2019, 46: 5499-5505 [22] Sacks WJ, Cook BI, Buenning N, et al. Effects of glo-bal irrigation on the near-surface climate. Climate Dynamics, 2009, 33: 159-175 [23] Fernandez-Martinez M, Vicca S, Janssens IA, et al. Nutrient availability as the key regulator of global forest carbon balance. Nature Climate Change, 2014, 4: 471-476 [24] Ju XT, Kou CL, Zhang FS, et al. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 2006, 143: 117-125 [25] Hungate BA, Dukes JS, Shaw MR, et al. Nitrogen and climate change. Science, 2003, 302: 1512-1513 [26] Cook BI, Shukla SP, Puma MJ, et al. Irrigation as an historical climate forcing. Climate Dynamics, 2015, 44: 1715-1730 [27] Lu YQ, Kimball BA. Validation of spring wheat responses to elevated CO2, irrigation, and nitrogen fertilization in the community land model 4.5. Earth and Space Science, 2020, 7: 14 [28] Fisher RA, Koven CD. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. Journal of Advances in Modeling Earth Systems, 2020, 12: e2018MS001453 [29] Pokhrel YN, Hanasaki N, Wada Y, et al. Recent progresses in incorporating human land-water management into global land surface models toward their integration into Earth system models. Wiley Interdisciplinary Reviews: Water, 2016, 3: 548-574 [30] Nazemi A, Wheater HS. On inclusion of water resource management in Earth system models. Part 1: Problem definition and representation of water demand. Hydrology and Earth System Sciences, 2015, 19: 33-61 [31] Ning L, Zhan C, Luo Y, et al. A review of fully coupled atmosphere-hydrology simulations. Journal of Geographical Sciences, 2019, 29: 465-479 [32] 高红凯, 赵舫. 全球尺度水文模型: 机遇、挑战与展望. 冰川冻土, 2020, 42(1): 224-233 [33] Allen R. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome, Italy: Food and Agriculture Organization, 1998 [34] Priestley CHB, Taylor RJ. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 1972, 100: 81-92 [35] Hargreaves G, Allen R. History and evaluation of hargreaves evapotranspiration equation. Journal of Irrigation and Drainage Engineering, 2003, 129: 53 [36] Schmied HM, Cáceres D, Eisner S, et al. The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geoscientific Model Development, 2021, 14: 1037-1079 [37] Polcher J, Bertrand N, Biemans H, et al. Improvements in Hydrological Processes in General Hydrological Mo-dels and Land Surface Models within WATCH [EB/OL]. (2011-12-12) [2022-12-12]. http://www.eu-watch.org/publications/technical-reports [38] Wada Y, Wisser D, Bierkens MFP. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth System Dyna-mics, 2014, 5: 15-40 [39] Nambuthiri S, Hagen E, Fulcher A, et al. Evaluating a physiological-based, on-demand irrigation system for container-grown woody plants with different water requi-rements. HortScience, 2017, 52: 251-257 [40] Yin Z, Wang XH, Ottlé C, et al. Improvement of the irrigation scheme in the ORCHIDEE land surface model and impacts of irrigation on regional water budgets over China. Journal of Advances in Modeling Earth Systems, 2020, 12: e2019MS001770 [41] Rost S, Gerten D, Bondeau A, et al. Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research, 2008, 44: W09405 [42] Sitch S, Smith B, Prentice IC, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 2003, 9: 161-185 [43] Nachimuthu G, Hulugalle NR, Watkins MD, et al. Irrigation induced surface carbon flow in a Vertisol under furrow irrigated cotton cropping systems. Soil & Tillage Research, 2018, 183: 8-18 [44] Zhang YJ, Wang YF, Niu HS. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios. Science of the Total Environment, 2019, 656: 373-387 [45] Saeed F, Hagemann S, Jacob D. Impact of irrigation on the South Asian summer monsoon. Geophysical Research Letters, 2009, 36: L20711 [46] Yoshikawa S, Cho J, Yamada HG, et al. An assessment of global net irrigation water requirements from various water supply sources to sustain irrigation: Rivers and reservoirs (1960-2050). Hydrology and Earth System Sciences, 2014, 18: 4289-4310 [47] Tuinenburg OA, Hutjes RWA, Stacke T, et al. Effects of irrigation in India on the atmospheric water budget. Journal of Hydrometeorology, 2014, 15: 1028-1050 [48] Drewniak B, Song J, Prell J, et al. Modeling agriculture in the Community Land Model. Geoscientific Model Development, 2013, 6: 495-515 [49] Lawrence DM, Fisher RA, Koven CD, et al. The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 2019, 11: 4245-4287 [50] Lombardozzi DL, Lu Y, Lawrence PJ, et al. Simulating agriculture in the community land model version 5. Journal of Geophysical Research: Biogeosciences, 2020, 125: e2019JG005529 [51] Xu X, Chen F, Barlage M, et al. Lessons learned from modeling irrigation from filed to regional scales. Journal of Advances in Modeling Earth Systems, 2019, 11: 2428-2448 [52] Druel A, Munier S, Mucia A, et al. Implementation and validation of a new irrigation scheme in the ISBA land surface model. Geoscientific Model Development, 2021, DOI: doi.org/10.5194/gmd-2021-332 [53] Zhang J, Guan K, Peng B, et al. Sustainable irrigation based on co-regulation of soil water supply and atmospheric evaporative demand. Nature Communications, 2021, 12: 5549 [54] Xia Q, Liu P, Fan Y, et al. Representing irrigation processes in the land surface-hydrological model and a case study in the Yangtze River Basin, China. Journal of Advances in Modeling Earth Systems, 2022, 14: e2021MS002653 [55] Zhang K, Li X, Zheng D, et al. Estimation of global irrigation water use by the integration of multiple satellite observations. Water Resources Research, 2022, 58: e2021WR030031 [56] Jalilvand E, Abolafia-Rosenzweig R, Tajrishy M, et al. Is it possible to quantify irrigation water-use by assimilating a high-resolution satellite soil moisture product? Water Resources Research, 2023, 59: e2022WR033-342 [57] Modanesi S, Massari C, Bechtold M, et al. Challenges and benefits of quantifying irrigation through the assimilation of Sentinel-1 backscatter observations into Noah-MP. Hydrology and Earth System Sciences, 2022, 26: 4685-4706 [58] Voisin N, Liu L, Hejazi M, et al. One-way coupling of an integrated assessment model and a water resources model: Evaluation and implications of future changes over the US midwest. Hydrology and Earth System Sciences, 2013, 17: 4555-4575 [59] Huber L, Rudisser J, Meisch C, et al. Agent-based modelling of water balance in a social-ecological system: A multidisciplinary approach for mountain catchments. Science of the Total Environment, 2021, 755: 142962 [60] Zhou F, Bo Y, Ciais P, et al. Deceleration of China’s human water use and its key drivers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117: 7702-7711 [61] Leng GY, Huang MY, Tang QH, et al. Modeling the effects of irrigation on land surface fluxes and states over the conterminous United States: Sensitivity to input data and model parameters. Journal of Geophysical Research: Atmospheres, 2013, 118: 9789-9803 [62] Joseph N, Ryu D, Malano HM, et al. Investigation into sustainable water use in India using combined large-scale earth system-based modelling and census-based statistical data. Journal of Hydrology, 2020, 587: 26 [63] Wisser D, Frolking S, Douglas EM, et al. Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophysical Research Letters, 2008, 35: L24408 [64] Massari C, Modanesi S, Dari J, et al. A review of irrigation information retrievals from space and their utility for users. Remote Sensing, 2021, 13: 4112 [65] Brombacher J, Silva IRdO, Degen J, et al. A novel evapotranspiration based irrigation quantification method using the hydrological similar pixels algorithm. Agricultural Water Management, 2022, 267: 107602 [66] Valmassoi A, Dudhia J, Di Sabatino S, et al. Evaluation of three new surface irrigation parameterizations in the WRF-ARW v3.8.1 model: The Po Valley (Italy) case study. Geoscientific Model Development, 2020, 13: 3179-3201 [67] 朱秀芳, 赵安周, 李宜展, 等. 农田灌溉对气候的影响研究综述. 生态学报, 2014, 34(17): 4816-4828 [68] Lawston PM, Santanello JA, Zaitchik BF, et al. Impact of irrigation methods on land surface model spinup and initialization of WRF forecasts. Journal of Hydrometeorology, 2015, 16: 1135-1154 [69] Yao Y, Vanderkelen I, Lombardozzi D, et al. Implementation and evaluation of irrigation techniques in the community land model. Journal of Advances in Modeling Earth Systems, 2022, 14: e2022MS003074 [70] Ozdogan M, Rodell M, Beaudoing HK, et al. Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. Journal of Hydrometeorology, 2010, 11: 171-184 [71] Yilmaz MT, Anderson MC, Zaitchik B, et al. Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin. Water Resources Research, 2014, 50: 386-408 [72] Evans JP, Zaitchik BF. Modeling the large-scale water balance impact of different irrigation systems. Water Resources Research, 2008, 44: W08448 [73] Xu J, Cai H, Wang X, et al. Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching. Agricultural Water Management, 2020, 228: 105904 [74] Zhang X, Pei D, Chen S, et al. Performance of double-cropped winter wheat-summer maize under minimum irrigation in the North China Plain. Agronomy Journal, 2006, 98: 1620-1626 [75] 刘丽平, 欧阳竹, 武兰芳, 等. 灌溉模式对不同群体小麦光合特性的调控机制. 中国生态农业学报, 2012, 20(2): 189-196 [76] Li F, Yan X, Li F, et al. Effects of different water supply regimes on water use and yield performance of spring wheat in a simulated semi-arid environment. Agricultural Water Management, 2001, 47: 25-35 [77] Xie Q, Chen G, Tao H, et al. Effects of drought and irrigation after sowing on maize seedling growth. Journal of China Agricultural University, 2015, 20: 16-24 [78] Fang QX, Ma L, Green TR, et al. Water resources and water use efficiency in the North China Plain: Current status and agronomic management options. Agricultural Water Management, 2010, 97: 1102-1116 [79] 陈博, 欧阳竹, 程维新, 等. 近50 a华北平原冬小麦-夏玉米耗水规律研究. 自然资源学报, 2012, 27(7): 1186-1199 [80] 刘涛, 周广胜, 谭凯炎, 等. 华北地区冬小麦灌溉制度及其环境效应研究进展. 生态学报, 2016, 36(19): 5979-5986 [81] 彭致功, 张宝忠, 刘钰, 等. 华北典型区冬小麦区域耗水模拟与灌溉制度优化. 农业机械学报, 2017, 48(11): 238-246 [82] 唐莉华, 杨大文, 孟凡磊, 等. 农业区环境-经济综合效益模型构建及应用. 农业工程学报, 2015, 31(19): 202-207 [83] 刘影, 关小康, 杨明达, 等. 基于DSSAT模型对豫北地区夏玉米灌溉制度的优化模拟. 生态学报, 2019, 39(14): 5348-5358 [84] Li HM, Inanaga S, Li ZH, et al. Optimizing irrigation scheduling for winter wheat in the North China Plain. Agricultural Water Management, 2005, 76: 8-23 [85] Xin Y, Tao F. Optimizing genotype-environment-mana-gement interactions to enhance productivity and eco-efficiency for wheat-maize rotation in the North China Plain. Science of the Total Environment, 2019, 654: 480-492 [86] Mo X, Liu S, Lin Z. Evaluation of an ecosystem model for a wheat-maize double cropping system over the North China Plain. Environmental Modelling & Software, 2012, 32: 61-73 [87] Amanambu AC, Obarein OA, Mossa J, et al. Ground-water system and climate change: Present status and future considerations. Journal of Hydrology, 2020, 589: 125163 [88] 张光辉, 费宇红, 刘春华, 等. 华北平原灌溉用水强度与地下水承载力适应性状况. 农业工程学报, 2013, 29(1): 1-10 [89] Li M, Wu P, Ma Z, et al. The decline in the ground-water table depth over the past four decades in China simulated by the Noah-MP land model. Journal of Hydrology, 2022, 607: 127551 [90] Barthel R, Banzhaf S. Groundwater and surface water interaction at the regional-scale: A review with focus on regional integrated models. Water Resources Management, 2016, 30: 1-32 [91] Zou J, Xie Z, Zhan C, et al. Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, northern China. Journal of Hydrology, 2015, 524: 625-641 [92] Leng GY, Huang MY, Tang QH, et al. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate. Journal of Advances in Modeling Earth Systems, 2015, 7: 1285-1304 [93] Leng GY, Huang MY, Tang QH, et al. Modeling the effects of groundwater-fed irrigation on terrestrial hydro-logy over the conterminous United States. Journal of Hydrometeorology, 2014, 15: 957-972 [94] Zeng Y, Xie Z, Zou J. Hydrologic and climatic responses to global anthropogenic groundwater extraction. Journal of Climate, 2017, 30: 71-90 [95] Zeng Y, Xie Z, Yu Y, et al. Effects of anthropogenic water regulation and groundwater lateral flow on land processes. Journal of Advances in Modeling Earth Systems, 2016, 8: 1106-1131 [96] 武利阳, 左洪超, 冯锦明. 华北平原地下水灌溉对区域气候影响的数值模拟. 气象学报, 2018, 76(4): 635-648 [97] Shah H, Zhou T, Sun N, et al. Roles of irrigation and reservoir operations in modulating terrestrial water and energy budgets in the Indian subcontinental river basins. Journal of Geophysical Research: Atmospheres, 2019, 124: 12915-12936 [98] Voeroesmarty CJ, Sharma KP, Fekete BM, et al. The storage and aging of continental runoff in large reservoir systems of the world. Ambio, 1997, 26: 210-219 [99] Hanasaki N, Kanae S, Oki T. A reservoir operation scheme for global river routing models. Journal of Hydrology, 2006, 327: 22-41 [100] 刘双, 谢正辉, 曾毓金, 等. 人为扰动对陆面水分能量的影响: 以沩水河流域为例. 气候与环境研究, 2018, 23(6): 683-701 [101] Nazemi A, Wheater HS. On inclusion of water resource management in earth system models. Part 2: Representation of water supply and allocation and opportunities for improved modeling. Hydrology and Earth System Sciences, 2015, 19: 63-90 [102] Lehner B, Reidy Liermann C, Revenga C, et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment, 2011, 9: 494-502 [103] Hanasaki N, Yoshikawa S, Pokhrel Y, et al. A global hydrological simulation to specify the sources of water used by humans. Hydrology and Earth System Sciences, 2018, 22: 789-817 [104] Nevison C, Hess P, Riddick S, et al. Denitrification, leaching, and river nitrogen export in the community earth system model. Journal of Advances in Modeling Earth Systems, 2016, 8: 272-291 [105] Wu N, Liu S, Zhang G, et al. Anthropogenic impacts on nutrient variability in the lower Yellow River. Science of the Total Environment, 2021, 755: 142488 [106] Liang J, Yang Z, Cai X, et al. Modeling the impacts of nitrogen dynamics on regional terrestrial carbon and water cycles over China with Noah-MP-CN. Advances in Atmospheric Sciences, 2020, 37: 679-695 [107] Lu C, Tian H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth System Science Data, 2017, 9: 181-192 [108] Liu J, You L, Amini M, et al. A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 8035-8040 [109] 钟茜, 巨晓棠, 张福锁. 华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析. 植物营养与肥料学报, 2006, 12(3): 285-293 [110] Bai H, Wang J, Fang Q, et al. Does a trade-off between yield and efficiency reduce water and nitrogen inputs of winter wheat in the North China Plain? Agricultural Water Management, 2020, 233: 106095 [111] Miao Q, Rosa RD, Shi H, et al. Modeling water use, transpiration and soil evaporation of spring wheat-maize and spring wheat-sunflower relay intercropping using the dual crop coefficient approach. Agricultural Water Management, 2016, 165: 211-229 [112] Chen J, Wang G, Hamani A, et al. Optimization of nitrogen fertilizer application with climate-smart agriculture in the North China Plain. Water, 2021, 13: 3415 [113] Xin Y, Tao F. Have the agricultural production systems in the North China Plain changed towards to climate smart agriculture since 2000? Journal of Cleaner Production, 2021, 299: 126940 [114] Zhang J, Tian H, Yang J, et al. Improving representation of crop growth and yield in the dynamic land ecosystem model and its application to China. Journal of Advances in Modeling Earth Systems, 2018, 10: 1680-1707 [115] Yu Z, Liu J, Kattel G. Historical nitrogen fertilizer use in China from 1952 to 2018. Earth System Science Data, 2022, 14: 5179-5194 [116] Yu G, Wen X, Sun X, et al. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology, 2006, 137: 125-137 [117] 张佳宝, 汪金舫, 信秀丽. 中国生态系统定位观测与研究数据集-农田生态系统卷-河南封丘站(1998—2008). 北京: 中国农业出版社, 2010 [118] 王和洲. 中国生态系统定位观测与研究数据集-农田生态系统卷-河南商丘站(2000—2008). 北京: 中国农业出版社, 2010 [119] Zhao Z, Wang E, Xue L, et al. Accuracy of root mode-lling and its impact on simulated wheat yield and carbon cycling in soil. Field Crops Research, 2014, 165: 99-110 [120] 孔祥斌, 张凤荣, 齐伟, 等. 集约化农区土地利用变化对土壤养分的影响: 以河北省曲周县为例. 地理学报, 2003, 58(3): 333-342 [121] 翟立超, 张丽华, 郑孟静, 等. 夏玉米粒位效应对增密的响应及其碳氮代谢特征. 华北农学报, 2022, 37(5): 97-104 [122] Roberts TL. Improving nutrient use efficiency. Turkish Journal of Agriculture and Forestry, 2008, 32: 177-182 [123] Leng G, Zhang X, Huang M, et al. Simulating county-level crop yields in the conterminous United States using the community land model: The effects of optimizing irrigation and fertilization. Journal of Advances in Modeling Earth Systems, 2016, 8: 1912-1931 [124] Wu X, Vuichard N, Ciais P, et al. ORCHIDEE-CROP (v0), a new process-based agro-land surface model: Model description and evaluation over Europe. Geoscientific Model Development, 2016, 9: 857-873 [125] Chang J, Viovy N, Vuichard N, et al. Modeled changes in potential grassland productivity and in grass-fed ruminant livestock density in Europe over 1961-2010. PLoS One, 2015, 10(5): e0127554 [126] Osborne T, Gornall J, Hooker J, et al. JULES-crop: A parametrisation of crops in the joint UK land environment simulator. Geoscientific Model Development, 2015, 8: 1139-1155 [127] Lokupitiya E, Denning S, Paustian K, et al. Incorporation of crop phenology in simple biosphere model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands. Biogeosciences, 2009, 6: 969-986 [128] Cai X, Yang ZL, Fisher JB, et al. Integration of nitrogen dynamics into the Noah-MP land surface model v1.1 for climate and environmental predictions. Geoscientific Model Development, 2016, 9: 1-15 [129] Hu F, Tan Y, Yu A, et al. Optimizing the split of N fertilizer application over time increases grain yield of maize-pea intercropping in arid areas. European Journal of Agronomy, 2020, 119: 126117 [130] Makary T, Schulz R, Mueller T, et al. Simplified N fertilization strategies for winter wheat. Part 1: Plants: Compensation capacity of modern wheat varieties. Archives of Agronomy and Soil Science, 2020, 66: 847-857 [131] 雷艳, 张富仓, 寇雯萍, 等. 不同生育期水分亏缺和施氮对冬小麦产量及水分利用效率的影响. 西北农林科技大学学报:自然科学版, 2010, 38(5): 167-174 [132] 杨显梅, 李广, 闫丽娟, 等. 施氮对土壤矿质氮、小麦氮素吸收及产量的影响. 分子植物育种, 2019, 17(23): 7942-7948 [133] Ercoli L, Arduini I, Mariotti M, et al. Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen and temperature during grain filling. Cereal Research Communications, 2010, 38: 294-303 [134] Davies B, Coulter JA, Pagliari PH. Timing and rate of nitrogen fertilization influence maize yield and nitrogen use efficiency. PLoS One, 2020, 15(5): e0233674 [135] Fabbri C, Basso B, Napoli M, et al. Developing a tactical nitrogen fertilizer management strategy for sustaina- ble wheat production. European Journal of Agronomy, 2023, 144: 126746 [136] 粟晓万, 杜建军, 贾振宇, 等. 缓/控释肥的研究应用现状. 中国农学通报, 2007, 23(12): 234-238 [137] Vejan P, Khadiran T, Abdullah R, et al. Controlled release fertilizer: A review on developments, applications and potential in agriculture. Journal of Controlled Release, 2021, 339: 321-334 [138] 周宝元, 王新兵, 王志敏, 等. 不同耕作方式下缓释肥对夏玉米产量及氮素利用效率的影响. 植物营养与肥料学报, 2016, 22(3): 821-829 [139] Shaviv A, Raban S, Zaidel E. Modeling controlled nutrient release from polymer coated fertilizers: Diffusion release from single granules. Environmental Science & Technology, 2003, 37: 2251-2256 [140] Lawrencia D, Wong S, Low D, et al. Controlled release fertilizers: A review on coating materials and mechanism of release. Plants, 2021, 10: 238 [141] 程冬冬, 赵贵哲, 刘亚青, 等. 土壤温度、土壤含水量对高分子缓释肥养分释放及土壤酶活性的影响. 水土保持学报, 2013, 27(6): 216-220 |
[1] | 苗贺, 袁磊, 杨淼茵, 胡艳宇, 陈欣, 何红波, 张旭东, 解宏图, 鲁彩艳. 基于15N示踪的东北黑土地保护性耕作农田减氮增产调控机制 [J]. 应用生态学报, 2023, 34(4): 876-882. |
[2] | 宁川川, 陈悦桂, 柳瑞, 李彤欣, 陈海浪, 田纪辉, 蔡昆争. 减氮配施秸秆生物炭对双季稻产量和硅、氮营养的影响 [J]. 应用生态学报, 2023, 34(4): 993-1001. |
[3] | 史多鹏, 叶子壮, 李惠通, 吕慎强, 王林权, 周春菊. 生物炭和氮肥配施对夏玉米-冬小麦轮作体系耕层土壤质量的影响 [J]. 应用生态学报, 2023, 34(2): 442-450. |
[4] | 高福洁, 崔鸿娇, 韩丙芳, 贺彦玲, 彭文栋, 刘定鑫, 伏兵哲, 马红彬. 亏缺灌溉对干旱区两种乡土植物种子生产性能及其水分利用效率的影响 [J]. 应用生态学报, 2022, 33(9): 2379-2387. |
[5] | 黄佳佳, 何莉莉, 刘玉学, 吕豪豪, 汪玉瑛, 陈照明, 陈金媛, 杨生茂. 生物炭配施硝化/脲酶抑制剂对亚热带水稻土活性氮气体排放的影响 [J]. 应用生态学报, 2022, 33(4): 1027-1036. |
[6] | 武开阔, 张哲, 武志杰, 冯良山, 宫平, 白伟, 冯晨, 张丽莉. 不同秸秆还田量和氮肥配施对玉米田土壤CO2排放的影响 [J]. 应用生态学报, 2022, 33(3): 664-670. |
[7] | 尹嘉德, 张俊英, 侯慧芝, 张绪成, 马明生, 郭宏娟, 方彦杰, 雷康宁. 基于APSIM模型的旱地春小麦产量对施氮量和施氮深度的响应模拟 [J]. 应用生态学报, 2022, 33(3): 775-783. |
[8] | 马龙, 王书停, 史雷, 张然, 王楷, 郑伟, 李紫燕, 翟丙年. 有机肥配施氮肥对西北旱地冬小麦产量、品质及土壤生物学特性的影响 [J]. 应用生态学报, 2022, 33(10): 2718-2724. |
[9] | 李晓明, 孙从建, 孙九林, 陈伟, 李新功. 基于遥感信息的黄土高原主要灌溉农业分布区生态安全特征 [J]. 应用生态学报, 2021, 32(9): 3177-3184. |
[10] | 马正波, 董学瑞, 房孟颖, 王琦, 闫鹏, 王庆燕, 卢霖, 董志强. 矮壮素配合氮肥全基施对华北夏玉米氮素利用的调控效应 [J]. 应用生态学报, 2021, 32(3): 931-941. |
[11] | 杨北方, 杨国正, 冯璐, 韩迎春, 雷亚平, 范正义, 王占彪, 李亚兵. 亏缺灌溉对棉花生长和水分利用效率的影响研究进展 [J]. 应用生态学报, 2021, 32(3): 1112-1118. |
[12] | 郭曾辉, 刘朋召, 雒文鹤, 王瑞, 李军. 限水减氮对关中平原冬小麦氮素利用和氮素表观平衡的影响 [J]. 应用生态学报, 2021, 32(12): 4359-4369. |
[13] | 肖富容, 李东坡, 武志杰, 薛妍, 崔磊, 张可, 李永华, 郑野. 添加生化抑制剂和腐植酸的稳定性增效尿素在黄土中的施用效果 [J]. 应用生态学报, 2021, 32(12): 4419-4428. |
[14] | 崔磊,李东坡,武志杰,薛妍,肖富容,张可,李永华,郑野. 不同硝化抑制剂对红壤氮素硝化作用及玉米产量和氮素利用率的影响 [J]. 应用生态学报, 2021, 32(11): 3953-3960. |
[15] | 石鑫蕊, 任彬彬, 江琳琳, 范淑秀, 曹英丽, 马殿荣. 有机肥替代部分化肥对水稻光合速率、氮素利用率和产量的影响 [J]. 应用生态学报, 2021, 32(1): 154-162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||