[1] Gao X, Zhang JS, Cai JF, et al. Surface energy partitioning and evapotranspiration in a Pinus tabuliformis plantation in Northeast China. Frontiers in Plant Science, 2023, 14: 1048828 [2] Gao X, Mei XR, Gu FX, et al. Evapotranspiration partitioning and energy budget in a rainfed spring maize field on the Loess Plateau, China. Catena, 2018, 166: 249-259 [3] Zhang SQ, Duan ZX, Zhou SH, et al. Correction to a simple biosphere model 2 (SiB2) simulation of energy and carbon dioxide fluxes over a wheat cropland in East China using the random forest model. Atmosphere, 2022, 13: 2080 [4] Zhang YY, Zhao WZ, He JH, et al. Energy exchange and evapotranspiration over irrigated seed maize agroecosystems in a desert-oasis region, northwest China. Agricultural and Forest Meteorology, 2016, 223: 48-59 [5] Fan YQ, Ding RS, Kang SZ, et al. Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland. Agricultural Water Management, 2017, 179: 122-131 [6] Ma XH, Feng Q, Su YH, et al. Forest evapotranspiration and energy flux partitioning based on eddy covariance methods in an arid desert region of northwest China. Advances in Meteorology, 2017, 2017: 1619047 [7] 邹旭东, 蔡福, 李荣平, 等. 玉米农田水热通量及能量变化研究. 生态环境学报, 2021, 30(8): 1642-1653 [8] Hossen MS, Mano M, Miyata A, et al. Surface energy partitioning and evapotranspiration over a double-cropping paddy field in Bangladesh. Hydrological Processes, 2012, 26: 1311-1320 [9] 张友良, 李躲, 冯绍元, 等. 覆膜滴灌紫薯农田水热传输规律及其对环境因子的响应. 农业机械学报, 2023, 54(2): 330-340 [10] Pardo N, Sánchez ML, Pérez IA, et al. Energy balance and partitioning over a rotating rapeseed crop. Agricultural Water Management, 2015, 161: 31-40 [11] Zhang YC, Shen YJ, Xu XL, et al. Characteristics of the water-energy-carbon fluxes of irrigated pear (Pyrus bretschneideri Rehd) orchards in the North China Plain. Agricultural Water Management, 2013, 128: 140-148 [12] 王玉辉, 井长青, 白洁, 等. 亚洲中部干旱区 3 个典型生态系统生长季水碳通量特征. 植物生态学报, 2014, 38(8): 795-808 [13] 吴东星, 李国栋, 张茜. 华北平原冬小麦农田生态系统通量贡献区. 应用生态学报, 2017, 28(11): 3663-3674 [14] Zhang KY, Liu DF, Liu H, et al. Energy flux observation in a shrub ecosystem of a gully region of the Chinese Loess Plateau. Ecohydrology & Hydrobiology, 2022, 22: 323-336 [15] 陆宣承, 文军, 田辉, 等. 若尔盖高寒湿地-大气间水热交换湍流通量的日变化特征分析. 高原气象, 2020, 39(4): 719-728 [16] Chen JY, Shao CL, Jiang SC, et al. Effects of changes in precipitation on energy and water balance in a Eurasian meadow steppe. Ecological Processes, 2019, 8: 17 [17] Kuang WH, Yang TR, Liu AL, et al. An EcoCity model for regulating urban land cover structure and thermal environment: Taking Beijing as an Example. Science China Earth Sciences, 2017, 60: 1098-1109 [18] Liu B, Cui YL, Luo YF, et al. Energy partitioning and evapotranspiration over a rotated paddy field in Southern China. Agricultural and Forest Meteorology, 2019, 276: 107626 [19] Zhang YY, Zhao WZ, He JH, et al. Energy exchange and evapotranspiration over irrigated seed maize agroecosystems in a desert-oasis region, northwest China. Agricultural and Forest Meteorology, 2016, 223: 48-59 [20] 高睿瑜, 张芷温, 李文龙, 等. 2018—2019年河南省兰考县土地利用变化对耕地风蚀的影响. 水土保持通报, 2021, 41(1): 112-117 [21] 张鹏. 豫北黄河故道区晚全新世古洪水沉积特征及记录. 硕士论文. 北京: 中国地质大学(北京), 2021 [22] 张义丰. 黄河故道的环境特征与整体开发. 地理研究, 1998(3): 66-73 [23] 程涉. 黄河故道杨树农田防护林带立地类型与生长规律研究. 硕士论文. 南京: 南京林业大学, 2020 [24] Li GD, Zhang JH, Zhu LQ, et al. Spatial variation and driving mechanism of soil organic carbon components in the alluvial/ sedimentary zone of the Yellow River. Journal of Geographical Sciences, 2021, 31: 535-550 [25] 刘莹, 李洁, 赵凌霄, 等. 黄河故道区域不同种植模式及秸秆还田方式对土壤的改良效果. 作物杂志, 2020(6): 109-115 [26] 刘绍贵, 吴兵, 严桂玲, 等. 典型黄河故道区耕地土壤养分调查与评价. 江苏农业科学, 2020, 48(12): 274-280 [27] 周宇, 黄辉, 张劲松, 等. 森林生态系统涡度相关法碳通量长时间连续性缺失数据插补方法的比较. 中国农业气象, 2021, 42(4): 330-343 [28] 刘尧, 于馨, 于洋, 等. R程序包“rdacca.hp”在生态学数据分析中的应用:案例与进展. 植物生态学报, 2023, 47(1): 134-144 [29] Lai JS, Zou Y, Zhang JL, et al. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package. Methods in Ecology and Evolution, 2022, 13: 782-788 [30] 马小红, 冯起. 荒漠河岸胡杨林生态系统能量分配及蒸散发. 生态学报, 2020, 40(23): 8683-8693 [31] 郑思宇, 王铁良, 魏新光, 等. 东北日光温室葡萄园水热通量特征及其对气象因子的响应. 干旱地区农业研究, 2020, 38(4): 200-206 [32] Ruan JS, Wen XH, Fan GZ, et al. Comparative analysis of different underlying surfaces using a high-resolution assimilation dataset in semi-arid areas in China. Theoretical and Applied Climatology, 2018, 134: 817-828 [33] Feng Y, Gong DZ, Mei XR, et al. Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China. Agricultural Water Management, 2017, 191: 193-206 [34] Liu B, Cui YL, Luo YF, et al. Energy partitioning and evapotranspiration over a rotated paddy field in Southern China. Agricultural and Forest Meteorology, 2019, 276: 107626 [35] Wang YB, You CH, Gao YH, et al. Seasonal variations and drivers of energy fluxes and partitioning along an aridity gradient in temperate grasslands of Northern China. Agricultural and Forest Meteorology, 2023, 342: 109736 [36] Yue P, Zhang Q, Zhang L, et al. Long-term variations in energy partitioning and evapotranspiration in a semiarid grassland in the Loess Plateau of China. Agricultural and Forest Meteorology, 2019, 278: 107671 [37] Gray MA, McGowan HA, Lowry AL, et al. Surface energy exchanges over contrasting vegetation types on a sub-tropical sand island. Agricultural and Forest Meteorology, 2018, 249: 81-99 [38] Majozi NP, Mannaerts CM, Ramoelo A, et al. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa. Hydrology and Earth System Sciences, 2017, 21: 3401-3415 [39] 刘曼. 黄河下游平原夏玉米农田生态系统能量平衡和碳水通量研究. 硕士论文. 郑州: 河南大学, 2022 [40] Baldocchi DD. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Global Change Biology, 2020, 26: 242-260 [41] 龚雪文, 刘浩, 孙景生, 等. 日光温室番茄不同空间尺度蒸散量变化及主控因子分析. 农业工程学报, 2017, 33(8): 166-175 [42] 邱让建, 杨再强, 景元书, 等. 轮作稻麦田水热通量及影响因素分析. 农业工程学报, 2018, 34(17): 82-88 [43] Zhang BZ, Liu Y, Xu D, et al. Multi-scale evapotranspiration of summer maize and the controlling meteorological factors in north China. Agricultural and Forest Meteorology, 2016, 216: 1-12 [44] Tian FQ, Yang PJ, Hu HC, et al. Energy balance and canopy conductance for a cotton field under film mulched drip irrigation in an arid region of northwestern China. Agricultural Water Management, 2017, 179: 110-121 [45] 张思敏, 郝丽娜, 童新, 等. 科尔沁沙地沙丘生态系统水热通量特征及影响驱动因子. 中国环境科学, 2024, 44(2): 1041-1052 [46] 冯禹, 郝卫平, 高丽丽, 等. 地膜覆盖对旱作玉米田水热通量传输的影响研究. 农业机械学报, 2018, 49(12): 300-313 [47] 裴薇薇, 王新, 王云英, 等. 祁连山区青海云杉林生长季水热通量特征及影响因素解析. 干旱区资源与环境, 2022, 36(12): 144-150 [48] 郑思宇. 东北寒区日光温室葡萄生育期水热传输特征及模拟研究. 博士论文. 沈阳: 沈阳农业大学, 2023 [49] Gong XW, Qiu RJ, Zhang BZ, et al. Energy budget for tomato plants grown in a greenhouse in northern China. Agricultural Water Management, 2021, 255: 107039 [50] Hoek van Dijke AJ, Mallick K, Schlerf M, et al. Examining the link between vegetation leaf area and land-atmosphere exchange of water, energy, and carbon fluxes using FLUXNET data. Biogeosciences, 2020, 17: 4443-4457 [51] Shang LY, Zhang Y, Lyu SH, et al. Energy exchange of an alpine grassland on the eastern Qinghai-Tibetan Plateau. Science Bulletin, 2015, 60: 435-446 |