应用生态学报 ›› 2024, Vol. 35 ›› Issue (6): 1725-1734.doi: 10.13287/j.1001-9332.202406.030
• 综合评述 • 上一篇
周易1, 程淑兰1, 方华军1,2*, 杨艳2, 郭一帆2, 李玉娜1, 史方颖2, 王慧2, 陈龙1
收稿日期:
2023-11-12
接受日期:
2024-04-19
出版日期:
2024-06-18
发布日期:
2024-12-18
通讯作者:
*E-mail: fanghj@igsnrr.ac.cn
作者简介:
周 易, 男, 1996年生, 硕士研究生。主要从事土壤碳氮生物地球化学研究。E-mail: 799698430@qq.com
基金资助:
ZHOU Yi1, CHENG Shulan1, FANG Huajun1,2*, YANG Yan2, GUO Yifan2, LI Yuna1, SHI Fangying2, WANG Hui2, CHEN Long1
Received:
2023-11-12
Accepted:
2024-04-19
Online:
2024-06-18
Published:
2024-12-18
摘要: 气候暖干化导致高寒地区泥炭地土壤氮排放急剧增加,但是潜在的微生物调节机制尚不清楚。本文综述了高寒泥炭地土壤氮转化与排放过程对温度升高、水位变化的响应,土壤厌氧氨氧化(Anammox)与NO3-异化还原过程的相互作用,土壤N2O产生路径及其贡献。当前研究的不足体现在:1)只关注土壤N2O排放,忽视了N2的释放,导致高寒地区泥炭地氮的损失量被严重低估;2)Anammox过程对泥炭地N2排放的贡献未被量化;3)Anammox、细菌反硝化和真菌协同反硝化过程对N2损失的相对贡献缺乏定量评估;4)气候暖干化情景下Anammox和NO3-还原过程的解耦机制尚不清楚。未来研究重点应着力于:构建野外增温、水位控制暖干化模拟试验平台,结合稳定性同位素、分子生物学和宏基因组学技术,围绕格局-过程-机理这条主线,系统评估高寒地区泥炭湿地氮排放(N2O、NO、N2)的量级、组成比例与主控因素,探讨土壤主要脱氮过程的相互作用规律,量化硝化、厌氧氨氧化和反硝化对N2O、N2产生的相对贡献,甄别对暖干化响应敏感的微生物类群,明晰土壤脱氮转变与微生物群落演替之间的耦联关系,揭示土壤脱氮过程对气候暖干化响应的微生物学机理。
周易, 程淑兰, 方华军, 杨艳, 郭一帆, 李玉娜, 史方颖, 王慧, 陈龙. 泥炭地土壤氮排放对气候暖干化响应研究进展[J]. 应用生态学报, 2024, 35(6): 1725-1734.
ZHOU Yi, CHENG Shulan, FANG Huajun, YANG Yan, GUO Yifan, LI Yuna, SHI Fangying, WANG Hui, CHEN Long. Research advances in the response of soil nitrogen emissions from peatlands to climate warming and drying[J]. Chinese Journal of Applied Ecology, 2024, 35(6): 1725-1734.
[1] Turunen J, Tomppo E, Tolonen K, et al. Estimating carbon accumulation rates of undrained mires in Finland: Application to boreal and subarctic regions. The Holocene, 2002, 12: 69-80 [2] Yu Z, Beilman D, Frolking S, et al. Peatlands and their role in the global carbon cycle. Eos, Transactions American Geophysical Union, 2011, 92: 97-98 [3] Voigt C, Marushchak ME, Lamprecht RE, et al. Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114: 6238-6243 [4] Roulet NT, Lafleur PM, Richard PJ, et al. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology, 2007, 13: 397-411 [5] Xu X, Tian H, Hui D. Convergence in the relationship of CO2 and N2O exchanges between soil and atmosphere within terrestrial ecosystems. Global Change Biology, 2008, 14: 1651-1660 [6] Stocker T, Qin D, Plattner G, et al. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Computational Geometry, 2013, 18: 95-123 [7] 《第三次气候变化国家评估报告》编写委员会. 第三次气候变化国家评估报告. 北京: 科学出版社, 2015 [8] 邓振镛, 张强, 倾继祖, 等. 气候暖干化对中国北方干热风的影响. 冰川冻土, 2009, 31(4): 664-671 [9] Bekryaev RV, Polyakov IV, Alexeev VA. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. Journal of Climate, 2010, 23: 3888-3906 [10] Elberling B, Christiansen HH, Hansen BU. High nitrous oxide production from thawing permafrost. Nature Geoscience, 2010, 3: 332-335 [11] Fenner N, Freeman C. Drought-induced carbon loss in peatlands. Nature Geoscience, 2011, 4: 895-900 [12] Zhu G, Wang S, Wang Y, et al. Anaerobic ammonia oxidation in a fertilized paddy soil. The ISME Journal, 2011, 5: 1905-1912 [13] Zhu G, Wang S, Wang W, et al. Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces. Nature Geoscience, 2013, 6: 103-107 [14] Yang WH, Teh YA, Silver WL. A test of a field-based 15N-nitrous oxide pool dilution technique to measure gross N2O production in soil. Global Change Biology, 2011, 17: 3577-3588 [15] Li XF, Hou LJ, Liu M, et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environmental Science & Technology, 2015, 49: 11560-11568 [16] Shan J, Zhao X, Sheng R, et al. Dissimilatory nitrate reduction processes in typical Chinese paddy soils: Rates, Relative contributions, and influencing factors. Environmental Science & Technology, 2016, 50: 9972-9980 [17] Bai R, Xi D, He JZ, et al. Activity, abundance and community structure of anammox bacteria along depth profiles in three different paddy soils. Soil Biology and Biochemistry, 2015, 91: 212-221 [18] Shen LD, Wu HS, Liu X, et al. Vertical distribution and activity of anaerobic ammonium-oxidising bacteria in a vegetable field. Geoderma, 2017, 288: 56-63 [19] Liimatainen M, Voigt C, Martikainen PJ, et al. Factors controlling nitrous oxide emissions from managed northern peat soils with low carbon to nitrogen ratio. Soil Biology and Biochemistry, 2018, 122: 186-195 [20] Wang P, Li JL, Luo XQ, et al. Biogeographical distributions of nitrogen-cycling functional genes in a subtropical estuary. Functional Ecology, 2022, 36: 187-201 [21] Repo ME, Susiluoto S, Lind SE, et al. Large N2O emissions from cryoturbated peat soil in tundra. Nature Geoscience, 2009, 2: 189-192 [22] Voigt C, Lamprecht RE, Marushchak ME, et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases-carbon dioxide, methane, and nitrous oxide. Global Change Biology, 2017, 23: 3121-3138 [23] Yang Y, Geng J, Cheng S, et al. Linking soil microbial community to the chemical composition of dissolved organic matter in a boreal forest during freeze-thaw cycles. Geoderma, 2023, 431: 116359 [24] Song LQ, Zang SY, Lin L, et al. Responses of nitrous oxide fluxes to autumn freeze-thaw cycles in permafrost peatlands of the Da Xing’an Mountains, Northeast China. Environmental Science and Pollution Research, 2022, 29: 31700-31712 [25] Cui Q, Song CC, Wang XW, et al. Effects of warming on N2O fluxes in a boreal peatland of permafrost region, Northeast China. Science of the Total Environment, 2018, 616: 427-434 [26] Wang JY, Song CC, Miao YQ, et al. Greenhouse gas emissions from southward transplanted wetlands during freezing-thawing periods in Northeast China. Wetlands, 2013, 33: 1075-1081 [27] Maljanen M, Virkajarvi P, Hytonen J, et al. Nitrous oxide production in boreal soils with variable organic matter content at low temperature-snow manipulation experiment. Biogeosciences, 2009, 6: 2461-2473 [28] Cui Q, Song CC, Wang XW, et al. Rapid N2O fluxes at high level of nitrate nitrogen addition during freeze-thaw events in boreal peatlands of Northeast China. Atmospheric Environment, 2016, 135: 1-8 [29] Sun X, Wang H, Song C, et al. Response of methane and nitrous oxide emissions from peatlands to permafrost thawing in Xiaoxing’an Mountains, Northeast China. Atmosphere, 2021, 12: 222 [30] Song Y, Jiang L, Song C, et al. Microbial abundance and enzymatic activity from tussock and shrub soil in permafrost peatland after 6-year warming. Ecological Indicators, 2021, 126: 107589 [31] Smith KA. The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils. Global Change Biology, 1997, 3: 327-338 [32] Hu J, VanZomeren CM, Inglett KS, et al. Greenhouse gas emissions under different drainage and flooding regimes of cultivated peatlands. Journal of Geophysical Research-Biogeosciences, 2017, 122: 3047-3062 [33] Xue D, Chen H, Zhan W, et al. How do water table drawdown, duration of drainage, and warming influence greenhouse gas emissions from drained peatlands of the Zoige Plateau? Land Degradation & Development, 2021, 32: 3351-3364 [34] Zhang W, Tao X, Hu Z, et al. The driving effects of nitrogen deposition on nitrous oxide and associated gene abundances at two water table levels in an alpine peatland. Science of the Total Environment, 2023, 898: 165525 [35] Carter MS, Larsen KS, Emmett B, et al. Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands-responses to climatic and environmental changes. Biogeosciences, 2012, 9: 3739-3755 [36] Pearson M, Penttila T, Harjunpaa L, et al. Effects of temperature rise and water-table-level drawdown on greenhouse gas fluxes of boreal sedge fens. Boreal Environment Research, 2015, 20: 489-505 [37] Yang G, Chen H, Wu N, et al. Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China. Soil Biology and Biochemistry, 2014, 78: 83-89 [38] Palmer K, Kopp J, Gebauer G, et al. Drying-rewetting and flooding impact denitrifier activity rather than community structure in a moderately acidic fen. Frontiers in Microbiology, 2016, 7: 215 [39] Martins CSC, Nazaries L, Delgado-Baquerizo M, et al. Identifying environmental drivers of greenhouse gas emissions under warming and reduced rainfall in boreal-temperate forests. Functional Ecology, 2017, 31: 2356-2368 [40] Caranto JD, Lancaster KM. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114: 8217-8222 [41] Shen LD, Liu S, Huang Q, et al. Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field. Applied and Environmental Microbiology, 2014, 80: 7611-7619 [42] Gödde M, Conrad R. Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils. Biology and Fertility of Soils, 1999, 30: 33-40 [43] Jung MY, Park SJ, Min D, et al. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Applied and Environmental Microbiology, 2011, 77: 8635-8647 [44] Kozlowski JA, Kits KD, Stein LY. Comparison of nitrogen oxide metabolism among diverse ammonia-oxidizing bacteria. Frontiers in Microbiology, 2016, 7: e00094 [45] Santoro AE, Buchwald C, McIlvin MR, et al. Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science, 2011, 333: 1282-1285 [46] Stieglmeier M, Mooshammer M, Kitzler B, et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. The ISME Journal, 2014, 8: 1135-1146 [47] Zhu G, Jetten MS, Kuschk P, et al. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Applied Microbiology and Biotechnology, 2010, 86: 1043-1055 [48] Hu BL, Rush D, van der Biezen E, et al. New anaerobic, ammonium-oxidizing community enriched from peat soil. Applied and Environmental Microbiology, 2011, 77: 966-971 [49] Humbert S, Tarnawski S, Fromin N, et al. Molecular detection of anammox bacteria in terrestrial ecosystems: Distribution and diversity. The ISME Journal, 2010, 4: 450-454 [50] Yang XR, Weng BS, Li H, et al. An overlooked nitrogen loss linked to anaerobic ammonium oxidation in estuarine sediments in China. Journal of Soils and Sediments, 2017, 17: 2537-2546 [51] Gu C, Zhou HF, Zhang QH, et al. Effects of various fertilization regimes on abundance and activity of anaerobic ammonium oxidation bacteria in rice-wheat cropping systems in China. Science of the Total Environment, 2017, 599: 1064-1072 [52] Long A, Heitman J, Tobias C, et al. Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Applied and Environmental Microbiology, 2013, 79: 168-176 [53] Nie SA, Li H, Yang XR, et al. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. The ISME Journal, 2015, 9: 2059-2067 [54] Chen Z, Luo XQ, Hu RG, et al. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microbial Ecology, 2010, 60: 850-861 [55] Bahram M, Espenberg M, Pärn J, et al. Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nature Communications, 2022, 13: 1430 [56] Wang SY, Radny D, Huang SB, et al. Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifer soils. Scientific Reports, 2017, 7: 40173 [57] Kim H, Bae HS, Reddy KR, et al. Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary. Water Research, 2016, 106: 51-61 [58] Ligi T, Truu M, Oopkaup K, et al. The genetic potential of N2 emission via denitrification and ANAMMOX from the soils and sediments of a created riverine treatment wetland complex. Ecological Engineering, 2015, 80: 181-190 [59] Penton CR, Deenik JL, Popp BN, et al. Assessing nitrogen transformations in a flooded agroecosystem using the isotope pairing technique and nitrogen functional gene abundances. Soil Science, 2014, 179: 2-10 [60] Gao DZ, Li XF, Lin XB, et al. Soil dissimilatory nitrate reduction processes in the Spartina alterniflora invasion chronosequences of a coastal wetland of southeastern China: Dynamics and environmental implications. Plant and Soil, 2017, 421: 383-399 [61] Kim H, Ogram A, Bae HS. Nitrification, anammox and denitrification along a nutrient gradient in the Florida Everglades. Wetlands, 2017, 37: 391-399 [62] Zhou GW, Yang XR, Li H, et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to Iron(Ⅲ) Reduction. Environmental Science & Technology, 2016, 50: 9298-9307 [63] Lee PO, Cherry JA, Edmonds JW. Organic nitrogen runoff in coastal marshes: Effects on ecosystem denitrification. Estuaries and Coasts, 2017, 40: 437-446 [64] Pan FX, Chapman SJ, Li YY, et al. Straw amendment to paddy soil stimulates denitrification but biochar amendment promotes anaerobic ammonia oxidation. Journal of Soils and Sediments, 2017, 17: 2428-2437 [65] Tait K, Laverock B, Widdicombe S. Response of an arctic sediment nitrogen cycling community to increased CO2. Estuaries and Coasts, 2014, 37: 724-735 [66] Baggs EM. A review of stable isotope techniques for N2O source partitioning in soils: Recent progress, remaining challenges and future considerations. Rapid Communications in Mass Spectrometry, 2008, 22: 1664-1672 [67] Yu KW, Seo DC, Delaune RD. Incomplete acetylene inhibition of nitrous oxide reduction in potential denitrification assay as revealed by using 15N-nitrate tracer. Communications in Soil Science and Plant Analysis, 2010, 41: 2201-2210 [68] Goldberg SD, Knorr KH, Blodau C, et al. Impact of altering the water table height of an acidic fen on N2O and NO fluxes and soil concentrations. Global Change Biology, 2010, 16: 220-233 [69] Bedard-Haughn A, Matson AL, Pennock DJ. Land use effects on gross nitrogen mineralization, nitrification, and N2O emissions in ephemeral wetlands. Soil Biology and Biochemistry, 2006, 38: 3398-3406 [70] Sgouridis F, Ullah S. Soil greenhouse gas fluxes, environmental controls, and the partitioning of N2O sources in UK natural and seminatural land use types. Journal of Geophysical Research Biogeosciences, 2017, 122: 2617-2633 [71] Park S, Perez T, Boering KA, et al. Can N2O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N2O production and consumption in tropical soils? Global Biogeochemical Cycles, 2011, 25: DOI: 10.1029/2009GB003615 [72] Gil J, Perez T, Boering K, et al. Mechanisms responsible for high N2O emissions from subarctic permafrost peatlands studied via stable isotope techniques. Global Biogeochemical Cycles, 2017, 31: 172-189 [73] Novak M, Gebauer G, Thoma M, et al. Denitrification at two nitrogen-polluted, ombrotrophic Sphagnum bogs in Central Europe: Insights from porewater N2O-isotope profiles. Soil Biology and Biochemistry, 2015, 81: 48-57 [74] Sgouridis F, Stott A, Ullah S. Application of the 15N gas-flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique. Biogeosciences, 2016, 13:1821-1835 [75] Tan Y, Wang Y, Chen Z, et al. Long-term artificial drainage altered the product stoichiometry of denitrification in alpine peatland soil of Qinghai-Tibet Plateau. Geoderma, 2022, 428: 116206 [76] Wang X, Wang S, Yang Y, et al. Hot moment of N2O emissions in seasonally frozen peatlands. The ISME Journal, 2023, 17: 792-802 [77] Berendt J, Jurasinski G, Wrage-Mönnig N. Influence of rewetting on N2O emissions in three different fen types. Nutrient Cycling in Agroecosystems, 2023, 125: 277-293 [78] Berendt J, Wrage-Mönnig N. Denitrification is not Necessarily the Main Source of N2O from Rewetted Fens. Journal of Soil Science and Plant Nutrition, 2023, 23: 3705-3713 [79] Kool DM, Wrage N, Oenema O, et al. Oxygen exchange with water alters the oxygen isotopic signature of nitrate in soil ecosystems. Soil Biology and Biochemistry, 2011, 43: 1180-1185 [80] Shi XZ, Hu HW, Zhu-Barker X, et al. Nitrifier-induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4-dimethylpyrazole phosphate. Environmental Microbiology, 2017, 19: 4851-4865 |
[1] | 李长青, 纪萌, 马萌萌, 王硕, 刘欢, 孙志梅. 天然增效剂与化学抑制剂复配对小麦/玉米轮作体系产量、氮素利用及氮平衡的影响 [J]. 应用生态学报, 2023, 34(9): 2391-2397. |
[2] | 陈惠, 朱成, 林红莲, 马红亮, 尹云锋, 高人. 木麻黄根瘤内生弗兰克氏菌的反硝化作用 [J]. 应用生态学报, 2023, 34(4): 1109-1116. |
[3] | 刘妍霁, 刘子恺, 金圣圣, 邓慧玉, 沈菊培, 贺纪正. 亚热带森林土壤氨氧化微生物和反硝化微生物功能基因丰度对氮磷输入的响应 [J]. 应用生态学报, 2023, 34(3): 639-646. |
[4] | 万翔宇, 肖孔操, 李德军, 张玉玲, 段鹏鹏. 桂西北岩溶区不同土地利用方式下土壤反硝化基因丰度及其驱动因素 [J]. 应用生态学报, 2023, 34(12): 3340-3346. |
[5] | 项剑, 孙禧, 王成, 扎西央宗, 史文竹, 王艮梅, 张焕朝. 生物炭对滨海盐碱土氮素转化和N2O排放的影响 [J]. 应用生态学报, 2023, 34(11): 2969-2977. |
[6] | 王梦娟, 黄志群, 张冰冰, 施秀珍. 不同林龄杉木人工林土壤硝化和反硝化作用 [J]. 应用生态学报, 2023, 34(1): 18-24. |
[7] | 李红强, 姚荣江, 杨劲松, 王相平, 谢文萍, 张新. 滨海盐渍农田土壤硝化势特征及其影响因素 [J]. 应用生态学报, 2022, 33(8): 2205-2212. |
[8] | 冯蒙蒙, 林永新, 贺子洋, 刘小飞, 陈仕东, 宛颂, 段春健, 叶桂萍, 贺纪正. 亚热带米槠天然林土壤氨氧化微生物对模拟氮沉降的响应 [J]. 应用生态学报, 2022, 33(6): 1622-1628. |
[9] | 郝静, 郭亚芬, 高雷. 小兴安岭典型森林土壤中外源丙氨酸的潜在周转差异 [J]. 应用生态学报, 2022, 33(12): 3237-3244. |
[10] | 邓米林, 冯蒙蒙, 刘小飞, 陈仕东, 贺纪正, 林永新. 模拟氮沉降降低亚热带米槠天然林土壤氧化亚氮排放潜势 [J]. 应用生态学报, 2022, 33(10): 2705-2710. |
[11] | 周钟昱, 张海阔, 梁佳辉, 张宝刚, 蒋文婷, 田琳琳, 李彦, 蔡延江. 太湖流域上游竹林河岸带土壤反硝化酶活性及其影响因素 [J]. 应用生态学报, 2021, 32(9): 3070-3078. |
[12] | 高科, 郭宗昊, 薛晨, 高文慧, 刘远, 姜黎. 生物炭与炭基肥对采煤塌陷复垦区土壤硝化和反硝化微生物群落的影响 [J]. 应用生态学报, 2021, 32(8): 2949-2957. |
[13] | 武威, 柴文云, 范珍, 李金虎, 鲁璐, 徐湛禹, 王振. 三级串联垂直潜流人工湿地的脱氮性能及微生物学特征 [J]. 应用生态学报, 2021, 32(7): 2578-2588. |
[14] | 李靳, 康荣华, 于浩明, 王莹莹, 姚萌, 方运霆. 土壤水分对土壤产生气态氮的厌氧微生物过程的影响 [J]. 应用生态学报, 2021, 32(6): 1989-1997. |
[15] | 刘美, 马志良. 模拟增温对青藏高原东部高寒灌丛土壤氮转化的影响 [J]. 应用生态学报, 2021, 32(6): 2045-2052. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||