欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (11): 3245-3255.doi: 10.13287/j.1001-9332.202511.003

• 研究论文 • 上一篇    下一篇

无人机LiDAR点云密度对长白落叶松人工林地上生物量估计的影响

丁静宇, 刘鑫, 董利虎, 郝元朔*   

  1. 东北林业大学林学院, 森林生态系统可持续经营教育部重点实验室, 哈尔滨 150040
  • 收稿日期:2025-07-09 接受日期:2025-09-12 出版日期:2025-11-18 发布日期:2026-06-18
  • 通讯作者: * E-mail: haoyuanshuo@nefu.edu.cn
  • 作者简介:丁静宇, 男, 1999年生, 硕士研究生。主要从事林分生长模型研究。E-mail: 2023110385@nefu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目(32301580)

Effect of UAV-LiDAR point density on aboveground biomass estimation in Larix olgensis plantations

DING Jingyu, LIU Xin, DONG Lihu, HAO Yuanshuo*   

  1. Ministry of Education Key Laboratory of Sustainable Forest Ecosystem Management, School of Forestry, Northeast Forestry University, Harbin 150040, China
  • Received:2025-07-09 Accepted:2025-09-12 Online:2025-11-18 Published:2026-06-18

摘要: 人工林生物量的精准估算对于科学经营管理森林、支撑我国“双碳”目标具有重要意义。传统地面调查方法存在效率低、覆盖局限等瓶颈,无人机激光雷达(UAV-LiDAR)技术通过高精度三维点云数据为森林地上生物量估算提供了新途径。本研究选取孟家岗林场112块长白落叶松人工林固定样地,设置200点·m-2至0.5点·m-2共9个密度,经重复随机脉冲抽样生成子集,提取冠层高度和冠层覆盖度,建立森林地上生物量估算模型,分析点云密度对指标稳定性、模型参数及预测精度的影响。结果表明: 点云密度从200点·m-2降至0.5点·m-2时,冠层高度和冠层覆盖度的均值保持高度一致,但其重复抽样随机误差增加,冠层高度标准差的均值从0.012 m增至0.261 m,冠层覆盖度标准差的均值从0.0008增至0.0167;密度降低引发地上生物量模型的结构性偏移,同时模型参数不确定性逐渐扩大;预测精度的均方根误差(RMSE)和偏差(Bias)逐渐增加,且RMSE和Bias重复抽样的标准差也呈现逐渐扩张趋势;112块样地的地上生物量预测均值稳定,但是重复预测标准差从0.26 Mg·hm-2升至5.26 Mg·hm-2。点云密度降低会显著降低森林地上生物量估算精度与稳定性,将点云密度维持在20点·m-2以上时,RMSE可控制在16%以内。本研究为无人机LiDAR数据采集与地上生物量估计提供了有利参考。

关键词: 无人机激光雷达, 点云密度, 地上生物量, 长白落叶松

Abstract: Accurate estimation of plantation biomass is of great significance for the scientific management and opera-tion of forests and for supporting China's “Dual Carbon” goals. Traditional ground survey methods have bottlenecks such as low efficiency and limited coverage. Unmanned aerial vehicle LiDAR (UAV-LiDAR) technology provides a new approach for forest aboveground biomass estimation through high-precision 3D point data. We selected 112 permanent plots of Larix olgensis plantations in Mengjiagang Forest Farm and classified them into a density gradient of nine levels from 200 to 0.5 points·m-2. We established a forest aboveground biomass estimation model by generating subsets through repeated random pulse sampling and extracting canopy mean height (HMEAN) and canopy height ratio (CHR), and analyzed the effects of point density on indicator stability, model parameters, and prediction accuracy. The results showed that when point density decreased from 200 points·m-2 to 0.5 points·m-2, the mean values of HMEAN and CHR remained highly stable, but the random errors from repeated sampling increased. The mean standard deviation of HMEAN increased from 0.012 m to 0.261 m, and that of CHR increased from 0.0008 to 0.0167. The density reduction caused structural shifts in the aboveground biomass model, along with gradually expanding uncertainty in model parameters. The predictive accuracy metrics, root mean square error (RMSE), and Bias progressively increased, while the standard deviations of repeated sampling for both RMSE and Bias also showed a gradually expanding trend. The predicted mean aboveground biomass for the 112 plots remained stable, but the standard deviation of repeated predictions increased from 0.26 Mg·hm-2 to 5.26 Mg·hm-2. Reducing point density significantly decreased the accuracy and stability of aboveground biomass estimation. Maintaining point density above 20 points·m-2 could control the RMSE within 16%. This study provided a valuable reference for UAV-LiDAR data acquisition and aboveground biomass estimation in L. olgensis planation.

Key words: UAV-LiDAR, point density, aboveground biomass (AGB), Larix olgensis