[1] Enquist BJ, Nikas KJ. Global allocation rules for patterns of biomass partitioning in seed plants. Science, 2002, 295: 1517-1520 [2] 沈亚洲, 孙晓梅, 张江涛, 等. 甘肃小陇山林区日本落叶松人工林单株生物量的研究. 林业科学研究, 2011, 24: 517-522 [3] Chave J, Réjou-Méchain M, Búrquez A, et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 2014, 20: 3177-3190 [4] Bi H, Turner J, Lambert MJ. Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees: Structure and Function, 2004, 18: 467-479 [5] Dong LH, Zhang LJ, Li FR. Developing two additive biomass equations for three coniferous plantation species in northeast China. Forests, 2016, 7: 136 [6] 高羽, 谢龙飞, 郝元朔, 等. 考虑随机效应的长白落叶松立木生物量模型构建及精度分析. 应用生态学报, 2023, 34(2): 333-341 [7] Bronisz K, Mehttalo L. Seemingly unrelated mixed-effects biomass models for young silver birch stands on post-agricultural lands. Forests, 2020, 11: 381 [8] Bullock PB, Boone LE. Deriving tree diameter distributions using Bayesian model averaging. Forest Ecology and Management, 2007, 242: 127-132 [9] Cappa PE, Yanchuk DA, Cartwright VC. Bayesian inference for multi-environment spatial individual-tree models with additive and full-sib family genetic effects for large forest genetic trials. Annals of Forest Science, 2012, 69: 627-640 [10] Wang DZ, Zhang ZD, Zhang DY, et al. Biomass allometric models for Larix rupprechtii based on Kosak’s taper curve equations and nonlinear seemingly unrelated regression. Frontiers in Plant Science, 2023, 13: 1056837 [11] Usoltsev VA, Shobairi SOR, Tsepordey IS. Additive models of single-tree biomass sensitive to temperature and precipitation in eurasia: A comparative study for Larix spp. and Quercus spp. Journal of Climate Change, 2021, 7: 37-56 [12] Zhang XQ, Duan AG, Zhang JG. Tree biomass estimation of Chinese fir (Cunninghamia lanceolata) based on Bayesian method. PLoS One, 2013, 8(11): 1-7 [13] Xie LF, Li FR, Zhang LJ, et al. A Bayesian approach to estimating seemingly unrelated regression for tree biomass model systems. Forests, 2020, 11: 1302 [14] Mauricio ZC, Carlos AS, Lauren A. Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass. Forest Ecology and Management, 2012, 277: 173-179 [15] Wang MX, Liu QW, Fu LY, et al. Airborne LIDAR-derived aboveground biomass estimates using a hierarchical Bayesian approach. Remote Sensing, 2019, 11: 1050 [16] 姚丹丹, 徐奇刚, 闫晓旺, 等. 基于贝叶斯方法的蒙古栎林单木树高-胸径模型. 南京林业大学学报: 自然科学版, 2020, 44(1): 131-137 [17] 田稼穑, 马世明, 王志波, 等. 内蒙古苏木山华北落叶松生物量及碳储量研究. 内蒙古林业科技, 2020, 46(1): 21-24 [18] Dong LH, Zhang Y, Zhang Z, et al. Comparison of tree biomass modeling approaches for Larch (Larix olgensis Henry) trees in northeast China. Forests, 2020, 11: 202 [19] 董利虎, 李凤日. 大兴安岭东部主要林分类型乔木层生物量估算模型. 应用生态学报, 2018, 29(9): 2825-2834 [20] Cao L, Li HK. Analysis of error structure for additive biomass equations on the use of multivariate likelihood function. Forests, 2019, 10: 298 [21] Mehtätalo L, Lappi J. Biometry for forestry and environmental data with examples in R. Boca Raton, FL, USA: CRC Press, 2020 [22] 黄金君, 舒清态, 王柯人, 等. 基于分层贝叶斯方法的高山松单木生物量模型. 西北林学院学报, 2022, 37(3): 126-132 [23] 谢龙飞, 李凤日, 董利虎. 基于贝叶斯似乎不相关回归方法的天然蒙古栎生物量模型构建. 应用生态学报, 2022, 33(7): 1937-1947 [24] Chen DS, Huang XZ, Sun XM, et al. A comparison of hierarchical and non-Hierarchical Bayesian approaches for fitting allometric Larch (Larix spp.) biomass equations. Forests, 2016, 7: 18 [25] Luo YJ, Wang XK, Ouyang ZY, et al. A review of biomass equations for China’s tree species. Earth System Science Data, 2020, 12: 21-40 [26] Rossi PE, Allenby GM, McCulloch R. Bayesian Statistics and Marketing. London: John Wiley & Sons, 2005 [27] Zapata-Cuartas M, Sierra CA, Alleman L. Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass. Forest Ecology and Management, 2012, 277: 173-179 [28] Dong LH, Zhang LJ, Li FR. A compatible system of biomass equations for three conifer species in Northeast, China. Forest Ecology and Management, 2014, 329: 306-317 [29] 董利虎, 李凤日, 宋玉文. 东北林区4个天然针叶树种单木生物量模型误差结构及可加性模型. 应用生态学报, 2015, 26(3): 704-714 [30] Dong LH, Zhang LJ, Li FR. Additive biomass equations based on different dendrometric variables for two dominant species (Larixi gmelinii Rupr. and Betula platyphylla Suk.) in natural forests in the Eastern Daxing’an Mountains, Northeast China. Forests, 2018, 9: 261 [31] 董利虎, 李凤日. 三种林分生物量估算方法的比较. 应用生态学报, 2016, 27(12): 3862-3870 [32] Bronisz K, Bijak S, Wojtan R, et al. Seemingly unrela-ted mixed-effects biomass models for black locust in west Poland. Forests, 2021, 12: 380 [33] Zell J, Bosch B, Kandler G. Estimating above-ground biomass of trees: Comparing Bayesian calibration with regression technique. European Journal of Forest Research, 2014, 133: 649-660 |