应用生态学报 ›› 2020, Vol. 31 ›› Issue (9): 3216-3226.doi: 10.13287/j.1001-9332.202009.039
李娇娇, 曾明*
收稿日期:
2020-01-06
接受日期:
2020-06-22
出版日期:
2020-09-15
发布日期:
2021-03-15
通讯作者:
* E-mail: zengming@swu.edu.cn
作者简介:
李娇娇, 女, 1994年生, 硕士研究生. 主要从事丛枝菌根对植物抗逆性的影响研究. E-mail: 1460927720@qq.com
基金资助:
LI Jiao-jiao, ZENG Ming*
Received:
2020-01-06
Accepted:
2020-06-22
Online:
2020-09-15
Published:
2021-03-15
Contact:
* E-mail: zengming@swu.edu.cn
Supported by:
摘要: 近年来,我国在菌根分子生物学、菌根营养学、菌根分类学和菌根生态学等方面取得了令人瞩目的研究成果,其中对丛枝菌根真菌(AMF)的研究居多。AMF能与大部分陆地植物根系形成共生关系,促进植物生长发育,提高植物抗逆性,在保持生态平衡、保护生态环境等方面发挥重要作用。本文主要从非生物胁迫(干旱胁迫、重金属污染、盐碱胁迫)和生物胁迫(致病菌和线虫侵染)方面介绍了AMF在植物根际逆境中发挥的生态功能及作用机制,提出了该研究领域尚存的不足之处和研究前景,为AMF后续研究提供参考。
李娇娇, 曾明. 丛枝菌根对植物根际逆境的生态学意义[J]. 应用生态学报, 2020, 31(9): 3216-3226.
LI Jiao-jiao, ZENG Ming. Ecological significance of arbuscular mycorrhiza on plant rhizosphere stress[J]. Chinese Journal of Applied Ecology, 2020, 31(9): 3216-3226.
[1] 李珂, 石兆勇, 王发园. 丛枝菌根生理生态功能及其在生态恢复中的作用. 土壤通报, 2017, 48(4): 996-1002 [Li K, Shi Z-Y, Wang F-Y. Physiological ecological function of arbuscular mycorrhiza and its role in ecological restoration. Chinese Journal of Soil Science, 2017, 48(4): 996-1002] [2] 苗原, 吴会芳, 马承恩, 等. 菌根真菌与吸收根功能性状的关系: 研究进展与评述. 植物生态学报, 2013, 37(11): 1035-1042 [Miao Y, Wu H-F, Ma C-E, et al. Association of mycorrhizal fungi with absorption root functional traits: Research progress and review. Chinese Journal of Plant Ecology, 2013, 37(11): 1035-1042] [3] 向丹, 徐天乐, 李欢, 等. 丛枝菌根真菌的生态分布及其影响因子研究进展. 生态学报, 2017, 37(11): 3597-3606 [Xiang D, Xu T-L, Li H, et al. Ecological distribution and its influencing factors of arbuscular mycorrhizal fungi. Acta Ecologica Sinica, 2017, 37(11): 3597-3606] [4] 孙金华, 毕银丽, 裘浪, 等. 土壤中丛枝菌根真菌对宿主植物磷吸收作用机制综述. 土壤通报, 2016, 47(2): 495-504 [Sun J-H, Bi Y-L, Qiu L, et al. Review of the mechanism of phosphorus uptake by arbuscular mycorrhizal fungi on host plants in soil. Chinese Journal of Soil Science, 2016, 47(2): 495-504] [5] Basu S, Rabara RC, Negi S. AMF: The future prospect for sustainable agriculture. Physiological and Molecular Plant Pathology, 2018, 102: 36-45 [6] 张伟珍, 李应德, 闫智臣, 等. AM真菌分子生物学研究进展. 草业科学, 2018, 35(7): 1641-1652 [Zhang W-Z, Li Y-D, Yan Z-C, et al. Advances in molecular biology of AM fungi. Pratacultural Science, 2018, 35(7): 1641-1652] [7] 李芳, 高萍, 段廷玉. AMF对非生物逆境的响应及其机制. 草地学报, 2016, 24(3): 491-500 [Li F, Gao P, Duan T-Y. Response of AMF to abiotic stress and its mechanism. Acta Agrestia Sinica, 2016, 24(3): 491-500] [8] 谢宏鑫, 刘润进, 孙吉庆, 等. AMF与嫁接对西瓜连作土壤理化和微生物状况的影响. 菌物学报, 2018,37(5): 625-632 [Xie H-X, Liu R-J, Sun J-Q, et al. Effects of AMF and grafting on soil physicochemical and microbial status of watermelon. Mycosystema, 2018, 37(5): 625-632] [9] 张鑫, 裴宗平, 孙干, 等. 紫花苜蓿根际丛枝菌根真菌与土壤理化性质的相关性研究. 北方园艺, 2016(13): 172-177 [Zhang X, Pei Z-P, Sun G, et al. Correlation between rhizosphere arbuscular mycorrhizal fungi and soil physicochemical properties of alfalfa. Northern Horticulture, 2016(13): 172-177] [10] 刘润进, 陈应龙. 菌根学. 北京: 科学出版社, 2007 [Liu R-J, Chen Y-L. Mycorrhizology. Beijing: Science Press, 2007] [11] Smith SE, Smith FA. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 2012, 104: 1-13 [12] 杨文亭, 冯远娇, 王建武. 丛枝菌根真菌在寄主植物抵御生物和非生物胁迫中的作用. 生态科学, 2008,27(4): 267-271 [Yang W-T, Feng Y-J, Wang J-W. Role of arbuscular mycorrhizal fungi in host plants against biotic and abiotic stresses. Ecological Science, 2008, 27(4): 267-271] [13] 唐明, 陈辉, 商鸿生. 丛枝菌根真菌(AMF)对沙棘抗旱性的影响. 林业科学, 1999, 35(3): 50-54 [Tang M, Chen H, Shang H-S. Effect of arbuscular mycorrhizal fungi (AMF) on drought resistance in seabuc-kthorn. Scientia Silvae Sinicae, 1999, 35(3): 50-54] [14] Matthias CR, Sara FW, Valerie TE. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant and Soil, 2002, 238: 325-333 [15] Bronick CJ, Lal R. Soil structure and management: A review. Geoderma, 2005, 124: 3-22 [16] Rillg MC, Mummey DL. Mycorrhizas and soil structure. New Phytologist, 2006, 171: 41-53 [17] 叶佳舒, 李涛, 胡亚军, 等. 干旱条件下AM真菌对植物生长和土壤水稳定性团聚体的影响. 生态学报,2013, 33(4): 1080-1090 [Ye J-S, Li T, Hu Y-J, et al. Effects of AMF on plant growth and soil water-stable agglomerates under drought conditions. Acta Ecologica Sinica, 2013, 33(4): 1080-1090] [18] 张伟珍, 古丽君, 段廷玉. AM真菌提高植物抗逆性的机制. 草业科学, 2018, 35(3): 491-507 [Zhang W-Z, Gu L-J, Duan T-Y. The mechanism by which AMF improve plant stress resistance. Pratacultural Science, 2018, 35(3): 491-507] [19] 张中峰. 菌根真菌对青冈栎幼苗耐旱性和土壤特性的影响及机理研究. 博士论文. 南京: 南京林业大学, 2015 [Zhang Z-F. Effects of Mycorrhizal Fungi on Drought Tolerance and Soil Properties of Green Oak Seedlings. PhD Thesis. Nanjing: Nanjing Forestry University, 2015] [20] 林子然, 张英俊. 丛枝菌根真菌和磷对干旱胁迫下紫花苜蓿幼苗生长与生理特征的影响. 草业科学, 2018, 35(1): 115-122 [Lin Z-R, Zhang Y-J. Effects of arbuscular mycorrhizal fungi and phosphorus on alfalfa seedling growth and physiological characteristics under drought stress. Pratacultural Science, 2018, 35(1): 115-122] [21] 张妮娜. 接种丛枝菌根真菌(AMF)对盆栽柑橘幼苗抗旱性的影响. 硕士论文. 重庆: 西南大学, 2018[Zhang N-N. Effect of Inoculated Arbuscular Mycorrhizal fungi (AMF) on Drought Resistance of Potted citrus Seedlings. Master Thesis. Chongqing: Southwest University, 2018] [22] Hachez C, Heinen RB, Draye X, et al. The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation. Plant Mole-cular Biology, 2008, 68: 337-353 [23] 徐德, 徐建俊, 李彪, 等. 植物水通道蛋白研究进展. 分子植物育种, 2019, 17(14): 4674-4678 [Xu D, Xu J-J, Li B, et al. Research progress of plant aquaporin. Molecular Plant Breeding, 2019, 17(14): 4674-4678] [24] 李涛, 陈保冬. 丛枝菌根真菌通过上调根系及自身水孔蛋白基因表达提高玉米抗旱性. 植物生态学报, 2012, 36(9): 973-981 [Li T, Chen B-D. Arbuscular mycorrhizal fungi improve maize drought resistance by up-regulating root and their own aquaporin gene expression. Chinese Journal of Plant Ecology, 2012, 36(9): 973-981] [25] Reddy KS, Sekhar KM, Reddy AR. Genotypic variation in tolerance to drought stress is highly coordinated with hydraulic conductivity-photosynthesis interplay and aquaporin expression in field-grown mulberry (Morus spp.). Tree Physiology, 2017, 37: 926-937 [26] 王新慧. 杜梨脱水素基因PbDHN3增强植株耐干旱和盐胁迫机理分析. 中国园艺学会2018年学术年会, 青岛, 2018: 33 [Wang X-H. Analysis of drought tolerance and salt stress mechanism of birch-leaf pear dehydratin gene PbDHN3. 2018 Academic Annual Meeting of the China Society for Horticultural Science. Qing-dao, 2018: 33] [27] 孙歆, 雷韬, 袁澍, 等. 脱水素研究进展. 武汉植物学研究, 2005, 23(3): 299-304 [Sun X, Lei T, Yuan S, et al. Research progress of dehydratin. Wuhan Botanical Studies, 2005, 23(3): 299-304] [28] Takezawa D, Watanabe N, Ghosh TK, et al. Epoxy carotenoid mediated synthesis of abscisic acid in Physcomitrella patens implicating conserved mechanisms for acclimation to hyperosmosis in embryo hytes. New Phytologist, 2015, 206: 209-219 [29] Himmelbach A, Yang Y, Grill E. Relay and control of abscisic acid signaling. Current Opinion in Plant Biology, 2003, 6: 470-479 [30] Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology, 2005, 56: 165-185 [31] Li ZG, Zhu LP. Hydrogen sulfide donor sodium hydrosulfide-induced accumulation of betaine involved in the acquisition of heat tolerance inmaize seedlings. Brazilian Journal of Botany, 2015, 38: 31-38 [32] 许锁链, 李忠光, 龚明. 外源甜菜碱对 PEG 胁迫下小桐子种子萌发和幼苗生长的保护作用. 种子, 2011, 30(9): 29-33 [Xu S-L, Li Z-G, Gong M. Protective effect of exogenous betaine on germination and seedling growth of tung seeds under PEG stress. Seed, 2011, 30(9): 29-33] [33] 张菲, 倪秋丹, 黄咏明 等. AMF增强枳抗旱性作用机制的初步研究. 菌物研究, 2017, 15(1): 8-13 [Zhang F, Ni Q-D, Huang Y-M, et al. A preliminary study on the mechanism of AMF enhancing drought resistance in trifoliate orange. Journal of Fungal Research, 2017, 15(1): 8-13] [34] Liao X, Li Y, Yan X. Removal of heavy metals and arsenic from a contaminated soil by sieving combined with washing process. Journal of Environmental Sciences, 2016, 41: 202-210 [35] 崔玉静, 张旭红, 朱永官. 体外模拟法在土壤-人途径重金属污染的健康风险评价中的应用. 环境与健康杂志, 2007, 24(9): 672-674 [Cui Y-J, Zhang X-H, Zhu Y-G. Health risk assessment of soil-oral exposure of heavy metal contaminated soil by invitro method. Journal of Environment and Health, 2007, 24(9): 672-674] [36] Dal Corso G, Farinati S. Regulatory networks of cadmium stress in plants. Plant Signaling & Behavior, 2010, 5: 663-667 [37] 唐明. 菌根真菌提高植物耐重金属机制. 北京: 科学出版社, 2015: 2-3 [Tang M. Mycorrhizal Fungi Improve Plant Heavy Metal Tolerance Mechanisms. Beijing: Science Press, 2015: 2-3] [38] 陈永勤, 江玲, 徐卫红, 等. 黑麦草、丛枝菌根对番茄Cd吸收、土壤Cd形态的影响. 环境科学, 2015, 36(12): 4642-4650 [Chen Y-Q, Jiang L, Xu W-H, et al. Effects of ryegrass and arbuscular mycorrhiza on Cd uptake and soil Cd morphology in tomato. Environmental Science, 2015, 36(12): 4642-4650] [39] Christie P, Li X, Chen B. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil, 2004, 261: 209-217 [40] Tamayo E, Gómez-Gallego T, Azcón-Aguilar C, et al. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Frontiers in Plant Science, 2014, 5: 547 [41] Li H, Luo N, Zhang LJ, et al. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics,subcellulaur distribution and chemical forms in rice?Science of the Total Environment, 2016, 571: 1183-1190 [42] Saraswat S, Rai J. Complexation and detoxification of Zn and Cd in metal accumulating plants. Reviews in Environmental Science & Biotechnology, 2011, 10: 327-339 [43] 王发园, 林先贵, 周健民. 丛枝菌根与土壤修复. 土壤, 2008, 36(3): 251-257 [Wang F-Y, Lin X-G, Zhou J-M. Arbuscular mycorrhiza and soil remediation. Soils, 2008, 36(3): 251-257] [44] 陈良华, 胡相伟, 杨万勤, 等. 接种丛枝菌根真菌对雌雄美洲黑杨吸收铅镉的影响. 环境科学学报, 2017, 37(1): 308-317 [Chen L-H, Hu X-W, Yang W-Q, et al. Effect of inoculating arbuscular mycorrhizal fungi on lead-cadmium uptake in male and female Ameri-can black poplar. Acta Scientiae Circumstantiae, 2017, 37(1): 308-317] [45] 华建峰, 林先贵, 蒋倩. AM真菌对烟草砷吸收及根际pH的影响. 生态环境学报, 2009, 18(5): 1746-1752 [Hua J-F, Lin X-G, Jiang Q. Effects of AM fungi on arsenic uptake and rhizosphere pH in tobacco. Ecology and Environmental Sciences, 2009, 18(5): 1746-1752] [46] 沈亚琴, 魏源, 陈志鹏, 等. 锑胁迫下丛枝菌根真菌对玉米生长与锑吸收及抗氧化酶的影响. 环境科学研究, 2017, 30(5): 712-719 [Shen Y-Q, Wei Y, Chen Z-P, et al. Effects of arbuscular mycorrhizal fungi on maize growth and antimony uptake and antioxidant enzymes under antimony stress. Research of Environmental Sciences, 2017, 30(5): 712-719] [47] 封晔, 陈建林. 丛枝菌根真菌AMF对猕猴桃根际土壤酶活性的影响. 农业与技术, 2017, 37(24): 16-18 [Feng Y, Chen J-L. Effect of arbuscular mycorrhizal fungal AMF on enzyme activity in the rhizosphere of kiwifruit. Agriculture and Technology, 2017, 37(24): 16-18] [48] 王明元, 夏仁学, 王鹏. 丛枝菌根真菌对枳不同根围铁及球囊霉素螯合金属的影响. 福建农林大学学报, 2010, 39(1): 42-46 [Wang M-Y, Xia R-X, Wang P. Effects of arbuscular mycorrhizal fungi on the chelating metals of iron and Glomalin around different trifoliate orange roots. Journal of Fujian Agriculture and Forestry University, 2010, 39(1): 42-46] [49] 孙红. 丛枝菌根真菌对Cd胁迫下柳枝稷生长和能源品质的影响及机理研究. 博士论文. 北京: 中国农业大学, 2018 [Sun H. Effects and Mechanism of Arbuscular Mycorrhizal Fungi on Growth and Energy Quality of Switchgrass under Cd stress. PhD Thesis. Beijing: China Agricultural University, 2018] [50] Sudovd R, Vosatka M. Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant and Soil, 2007, 296: 77-83 [51] Castiglione S, Todeschini V, Franchin C, et al. Clonal differences in survival capacity,copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: A large-scale field trail on heavily polluted soil. Environmental Pollution, 2009, 157: 2108-2117 [52] Chen X, Zheng Z, Shi Q, et al. Effect of AMF and plants on accumulation of Pb and Cd in soil. Journal of Fungal Research, 2017, 15: 33-38, 52 [53] 吴洁婷, 杨东广, 王立, 等. 植物-菌根真菌联合修复重金属污染土壤. 微生物学通报, 2018, 45(11): 2503-2516 [Wu J-T, Yang D-G, Wang L, et al. Combined remediation of heavy metal contaminated soil by plant-mycorrhizal fungi. Microbiology China, 2018, 45(11): 2503-2516] [54] 李晓曼, 王建军. 丛枝菌根真菌对镍胁迫桂花幼苗光合作用及抗氧化酶活性的影响. 江苏农业科学, 2019, 47(21): 223-227 [Li X-M, Wang J-J. Effect of arbuscular mycorrhizal fungi on photosynthesis and antioxidant enzyme activity in osmanthus seedlings under Ni stress. Jiangsu Agricultural Sciences, 2019, 47(21): 223-227] [55] 林双双, 孙向伟, 王晓娟, 等. AM真菌提高宿主植物耐受重金属胁迫的生理机制. 草业科学, 2013, 30(3): 365-374 [Lin S-S, Sun X-W, Wang X-J, et al. The physiological mechanism of AM fungus improving tolerance to heavy metal stress in host plants. Pratacultural Science, 2013, 30(3): 365-374] [56] 王红新. 丛枝菌根真菌在植物修复重金属污染土壤中的作用. 中国土壤与肥料, 2010(5): 1-5 [Wang H-X. Role of arbuscular mycorrhizal fungi in phytoreme-diation of heavy metal contaminated soil. Soil and Ferti-lizer Sciences in China, 2010(5): 1-5] [57] 闫明, 钟章成. 铝胁迫对感染丛枝菌根真菌的樟树幼苗生长的影响. 林业科学, 2009, 43(4): 59-65 [Yang M, Zhong Z-C. Effect of Al stress on the growth of camphor seedlings infected with arbuscular mycorrhizal fungi. Scientia Silvae Sinicae, 2009, 43(4): 59-65] [58] Aloui A, Recorbet G, Gollotte A, et al. On the mechanisms of cadmium stress alleviation in Medicago trunca-tula by arbuscular mycorrhizal symbiosis: A root proteomic study. Proteomics, 2009, 9: 420-433 [59] Burleigh SH, Kristensen BK, Bechmann IE. A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Molecular Biology, 2003, 52: 1077-1088 [60] Mishra J, Singh R, Arora NK. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology, 2017, 8: 1706, doi: 10.3389/fmicb.2017.01706 [61] 李少朋, 陈昢圳, 刘惠芬, 等. 丛枝菌根提高滨海盐碱地植物耐盐性的作用机制及其生态效应. 生态环境学报, 2019, 28(2): 411-418 [Li S-P, Chen P-Z, Liu H-F, et al. Mechanism and ecological effects ofarbuscular mycorrhizal on salt tolerance in coastal saline-alkali plants. Ecology and Environmental Sciences, 2019, 28(2): 411-418] [62] 杨劲松. 中国盐渍土研究的发展历程与展望. 土壤学报, 2008, 45(5): 837-845 [Yang J-S. Development course and prospect of saline soil research in China. Acta Pedologica Sinica, 2008, 45(5): 837-845] [63] 冯固, 白灯莎, 杨茂秋, 等. 盐胁迫下AM真菌对玉米生长及耐盐生理指标的影响. 作物学报, 2000, 26(6): 743-750 [Feng G, Bai D-S, Yang M-Q, et al. Effects of AM fungi on growth and salt tolerance in maize under salt stress. Acta Agronomica Sinica, 2000, 26(6): 743-750] [64] 高崇, 曾明, 牛琳琳, 等. 盐胁迫下丛枝菌根真菌对植物影响的研究现状与发展趋势. 北方园艺, 2013(10): 180-184 [Gao C, Zeng M, Niu L-L, et al. Research status and development trend of mycorrhizal fungi on plants under salt stress. Northern Horticulture, 2013(10): 180-184] [65] 申连英, 毛永民, 鹿金颖, 等. 丛枝菌根对酸枣实生苗耐盐性的影响. 土壤学报, 2004, 41(3): 426-433[Shen L-Y, Mao Y-M, Lu J-Y, et al. Effects of arbuscular mycorrhiza on salt tolerance of wild jujube seedlings. Acta Pedologica Sinica, 2004, 41(3): 426-433] [66] Evelin H, Giri B, Kapoor R. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in Na Cl-stressed Trigonella foenumgraecu. Mycorrhiza, 2012, 22: 203-217 [67] 王英男, 陶爽, 华晓雨, 等. 盐碱胁迫下AM真菌对羊草生长及生理代谢的影响. 生态学报, 2018, 38(6): 2187-2194 [Wang Y-N, Tao S, Hua X-Y, et al. Effects of AM fungi on growth and physiological metabolism of guinea grass under saline-alkali stress. Acta Ecologica Sinica, 2018, 38(6): 2187-2194] [68] 潘晶, 黄翠华, 罗君, 等. 盐胁迫对植物的影响及AMF提高植物耐盐性的机制. 地球科学进展, 2018, 33(4): 361-372 [Pan J, Huang C-H, Luo J, et al. Effects of salt stress on plants and the mechanism of AMF improving plant salt tolerance. Advances in Earth Science, 2018, 33(4): 361-372] [69] Allen MF. Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (H.B.K.) Lag Ex Steud. New Phytologist, 1982, 91: 191-196 [70] 任承钢, 孔存翠, 李岩, 等. 丛枝菌根真菌-植物共生体耐盐机制的研究进展. 中国科学:生命科学, 2016, 46(9): 1062-1068 [Ren C-G, Kong C-C, Li Y, et al. Research progress on salt tolerance mechanism of auscular mycorrhizal fungus-plant symbionts. Scientia Sinica Vitae, 2016, 46(9): 1062-1068] [71] Abdel-Fattah GM, Asrar AWA. Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiologiae Plantarum, 2012, 34: 267-277 [72] Jahromi F, Aroca R, Porcel R, et al. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology, 2008, 55: 45-53 [73] 李文彬, 宁楚涵, 郭绍霞. AM真菌对百合调节激素平衡与细胞渗透性以及改善耐盐性的研究. 西北植物学报, 2018, 38(8): 1498-1506 [Li W-B, Ning C-H, Guo S-X. Studies of AM fungi regulating hormone balance and cell permeability and improving salt tole-rance in lily. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(8): 1498-1506] [74] 贺忠群, 李焕秀, 汤浩茹, 等. 丛枝菌根真菌对NaCl胁迫下番茄内源激素的影响. 核农学报, 2010, 24(5): 1099-1104 [He Z-Q, Li H-X, Tang H-R, et al. Effect of arbuscular mycorrhizal fungi on endogenous hormones in tomato under NaCl stress. Journal of Nuclear Agricultural Sciences, 2010, 24(5): 1099-1104] [75] 贺忠群, 贺超兴, 闫妍, 等. 盐胁迫下丛枝菌根真菌对番茄吸水及水孔蛋白基因表达的调控. 园艺学报,2011, 38(2): 273-280 [He Z-Q, He C-X, Yan Y, et al. Regulation of tomato water uptake and aquaporin gene expression by arbuscular mycorrhizal fungi under salt stress. Acta Horticulturae Sinica, 2011, 38(2): 273-280] [76] Vander Heijden Marcel GA, Klironomos JN, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396: 69-72 [77] Staddon PL, Fitter AH, Graves JD. Effect of elevated atmospheric CO2 on mycorrhizal colonization, external mycorrhizal hyphal production and phosphorus inflow in Plantago lanceolata and Trifolium repns in association with the arbuscular mycorrhizal fungus Glomus mosseae. Global Change Biology,1999, 5: 347-358 [78] 黄丽丽, 张中义, 黄云, 等. 植物病害的定义诌议、利弊分析及综合控制. 植物保护, 2009, 35(1): 97-101 [Huang L-L, Zhang Z-Y, Huang Y, et al. Definition, pros and cons analysis and integrated control of plant diseases. Plant Protection, 2009, 35(1): 97-101] [79] 张峰, 段廷玉, 闫飞扬, 等. 丛枝菌根真菌与根际微生物的互作. 草业科学, 2014, 31(9): 1673-1685 [Zhang F, Duan T-Y, Yan F-Y, et al. Interaction between arbuscular mycorrhizal fungi and rhizosphere microorganisms. Pratacultural Science, 2014, 31(9): 1673-1685] [80] 邹慧, 曾杰. 菌根对林木生理代谢影响研究进展. 世界林业研究, 2018, 31(2): 19-24 [Zou H, Zeng J.Research progress of mycorrhizal effect on tree physiological metabolism. World Forestry Research, 2018, 31(2): 19-24] [81] Vigo C, Norman JR, Hooker JE. Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathology, 2000, 49: 509-514 [82] Tabin T, Arunachalam A, Shrivastava K, et al. Effect of arbuscular mycorrhizal fungi on damping-off disease in Aquilaria agallocha Roxb. seedlings. Tropical Ecology, 2009, 50: 243-248 [83] Merrild MP, Ambus P, Rosendahl S, et al. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. New Phytologist, 2013, 200: 229-240 [84] Harrier LA, Waston CA. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Management Science, 2004, 60: 149-157 [85] Mohammad M. Interactions between arbuscular mycorrhizal fungi and soil bacteria. Applied Microbiology and Biotechnology, 2011, 89: 917-930 [86] 黄京华, 曾任森, 骆世明. AM菌根真菌诱导对提高玉米纹枯病抗性的初步研究. 中国生态农业学报, 2006, 14(3): 169-169 [Huang J-H, Zeng R-S, Luo S-M. Primary study of AM mycorrhizal fungal induction to improve resistance to maize sheath blight. Chinese Journal of Eco-Agriculture, 2006, 14(3):169-169] [87] Macguidwin AE, Bird GW, Safir GR. Influence of glomus-fasciculatum on Meloidogyne hapla infecting Allium cepa. Journal of Nematology, 1985, 17: 389-395 [88] Will ME, Syivia DM. Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats. Applied and Environmental Microbiology, 1990, 56: 2073-2079 [89] 龙伟文, 王平, 冯新梅, 等. PGPR与AMF相互关系的研究进展. 应用生态学报, 2000, 11(2): 311-314 [Long W-W, Wang P, Feng X-M, et al. Research progress of relationship between PGPR and AMF. Chinese Journal of Applied Ecology, 2000, 11(2): 311-314] [90] 刘贵猛, 谭树朋, 孙文献, 等. AMF和PGPR对生姜青枯病的影响. 菌物研究, 2017, 15(1): 1-7 [Liu G-M, Tan S-P, Sun W-X, et al. Effects of AMF and PGPR on bacterial wilt in ginger. Journal of Fungal Research, 2017, 15(1): 1-7] [91] 高萍, 李芳, 郭艳娥, 等. 丛枝菌根真菌和根瘤菌防控植物真菌病害的研究进展. 草地学报, 2017, 25(2):236-242 [Gao P, Li F, Guo Y-E, et al. Advances in the control of plant fungal diseases by arbuscular mycorrhizal fungi and rhizobia. Acta Agrestia Sinica, 2017, 25(2): 236-242] [92] 杨会晓, 孙媛媛, 贾彩红, 等. 香蕉苯丙氨酸解氨酶基因家族的全基因组鉴定及表达分析. 热带作物学报, 2019, 40(10): 1949-1957 [Yang H-X, Sun Y-Y, Jia C-H, et al. Genome-wide identification and expression analysis of banana phenylalanine ammonialyase gene family. Chinese Journal of Tropical Crops, 2019, 40(10): 1949-1957] [93] 罗巧玉, 王晓娟, 李媛媛, 等. AM真菌在植物病虫害生物防治中的作用机制. 生态学报, 2013, 33 (19): 5997-6005 [Luo Q-Y, Wang X-J, Li Y-Y, et al. Mechanism of biological control to plant diseases using arbuscular mycorrhizal fungi. Acta Ecologica Sinica, 2013, 33 (19): 5997-6005] [94] 陈年来, 胡敏, 乔昌萍, 等. BTH、SA和SiO2处理对甜瓜幼苗白粉病抗性及叶片HRGP和木质素含量的影响. 中国农业科学, 2010, 43(3): 535-541 [Chen N-L, Hu M, Qiao C-P, et al. Effect of BTH, SA and SiO2 treatment on powdery mildew resistance and leaf content of HRGP and lignin in melon seedlings. Scientia Agricultura Sinica, 2010, 43(3): 535-541] [95] 赵菊莲. 丛枝菌根真菌诱导草莓枯萎病抗性机理研究. 北方园艺, 2013(17): 115-117 [Zhao J-L. Resistance mechanism of arbuscular mycorrhizal fungi to strawberry blight. Northern Horticulture, 2013(17): 115-117] [96] 王倡宪, 李晓林, 宋福强, 等. 两种丛枝菌根真菌对黄瓜苗期枯萎病的防效及根系抗病相关酶活性的影响. 中国生态农业学报, 2012, 20(1): 53-57 [Wang C-X, Li X-L, Song F-Q, et al. Effect of two arbuscular mycorrhizal fungi on the control of cucumber seedling blight and root disease resistance-related enzyme activity. Chinese Journal of Eco-Agriculture, 2012, 20(1): 53-57] [97] 马通, 李桂舫, 刘润进, 等. AM真菌对连作西瓜根内和根围土壤酚酸类物质和黄酮含量的影响. 北方园艺, 2014(8): 1-4 [Ma T, Li G-F, Liu R-J, et al. Effects of arbuscular mycorrhizal fungus on the content of phenolic acids and flavonoids in continuous clopping watermelon roots and rhizosphere soils. Northern Horticulture, 2014(8): 1-4] [98] Willis A, Rodrigues BF, Harris PJC. The ecology of arbuscular mycorrhizal fungi. Critical Reviews in Plant Sciences, 2013, 32: 1-20 [99] Ortu G, Balestrini R, Pererira PA, et al. Plant genes related to gibberellin biosynthesis and signalingare differentially regulated during the early stage of AM fungal interactions. Molecular Plant, 2012, 5: 951-954 [100] 于建新, 李敏, 刘润进. 菌根真菌与植物激素相互作用研究进展. 青岛农业大学学报:自然科学版, 2009, 26(1): 4-7 [Yu J-X, Li M, Liu R-J. Research progress on interaction between mycorrhizal fungi and plant hormones. Journal of Qingdao Agricultural University: Natural Science, 2009, 26(1): 4-7] [101] Malamy J, Hennig J, Klessig DF, et al. Temperature-dependent induction of salicy licacid and its conjugates during the resistance responses to tobacco mosaic virus infection. Plant Cell, 1992, 4: 359-365 [102] Blilou I, Ocampo JA, García-Garrido JM, et al. Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mossese. Journal of Experimental Botany, 2000, 51: 1969-1977 [103] Pozo MJ, Azcón-Aguilar C. Unraveling mycorrhizal-induced resistance. Current Opinion in Plant Biology, 2007, 10: 393-398 [104] Zhang H, Franken P. Comparison of systemic and local interactions between the arbuscular mycorrhizal fungus Funneliformis mosseae and the root pathogen Aphanomyces euteiches in Medicago truncatula. Mycorrhiza, 2014, 24: 419-430 [105] Rupam K. Induced resistance in mycorrhizal tomato is correlated to concentration of jasmonic acid. Journal of Biological Sciences, 2008, 8: 49-56 [106] Gao LL, Smith FA, Smith SE. The rmc locus does not affect plant interactions or defence-related gene expression when tomato (Solanum lycopersicum) is infected with the root fungal parasite, Rhizoctonia. Functional Plant Biology, 2006, 33: 289-296 [107] Song Y, Cao M, Xie L, et al. Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight. Mycorrhiza, 2011, 21: 721-731 [108] Soliman T, Mourits Monique CM, vander Werf W, et al. Framework for modelling economic impacts of invasive species, applied to pine wood nematode in Europe. PLos One, 2012, 7(9): e45505 [109] Hao ZP, Fayolle L, Van Tuinen D, et al. Local and systemic mycorrhizal-induced protection againstthe ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. Journal of Experimental Botany, 2012, 63: 3657-3672 [110] Rosa-Mera CJ, Ferrera-Cerrato R, Alarcón A, et al. Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus. Plant and Soil, 2011, 349: 367-376 [111] Ingham RE. Interactions between nematodes and vesi-cular-arbuscular mycorrhizae. Agriculture, Ecosystems & Environment, 1988, 24: 169-182 [112] Trotta A, Varese GC, Gnavi E, et al. Interactions between the soil-borne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant and Soil, 1996, 185: 199-209 [113] 李海燕. 丛枝菌根(AM)真菌诱导植物抗/耐线虫病害机制的研究. 博士论文. 泰安: 山东农业大学, 2002 [Li H-Y. Studies on the Mechanism of Arbuscular Mycorrhizal (AM) Fungus-induced Plant Resis-tance/Tolerance to Nematode Disease. PhD Thesis. Tai’an: Shandong Agricultural University, 2002] [114] Kloppholz S, Kuhn H, Requena H. A secreted fungal effector of Glomus intraradices promotes symbiotic bio-trophy. Current Biology, 2011, 219: 1204-1209 [115] 吕星光, 刘润进, 李敏. 丛枝菌根真菌对西瓜嫁接苗抗南方根结线虫病的影响. 菌物学报, 2017, 36(7): 1018-1027 [Lyu X-G, Liu R-J, Li M. Effect of arbuscular mycorrhizal fungi on the grafting seedlings of watermelon against Meloidogyne incognita. Mycosystema, 2017, 36(7): 1018-1027] [116] Li HY, Yang GD, Shu HR, et al. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant and Cell Physiology, 2006, 47: 154-163 [117] 李星. β-环糊精对籽粒苋-真菌修复Cd和BDE-209复合污染土壤的影响及机理. 硕士论文. 广州: 暨南大学, 2018 [Li X. Effect and Mechanism of β-cyclodextrin on Soil Contaminated with Cd and BED-209 in Grain Amaranth-Fungus Remediation. Master thesis. Guangzhou: Ji’nan University, 2018] |
[1] | 薛冰, 李宏庆, 刚爽, 任婉侠, 王永生, 方兰, 李勇进, 赵雪雁, 陈欣, 李天来. 发展新时代的乡村生态学 [J]. 应用生态学报, 2024, 35(1): 268-274. |
[2] | 杨新国, 宋乃平, 陈林, 王磊. 旱区植被建设与生境旱化的生态学因果关系 [J]. 应用生态学报, 2023, 34(6): 1713-1720. |
[3] | 江尚焘, 栗晗, 彭海英, 梅新兰, 陈廷速, 徐阳春, 董彩霞, 沈其荣. 有机肥替代部分化肥对芒果丛枝菌根真菌群落的影响 [J]. 应用生态学报, 2023, 34(2): 481-490. |
[4] | 史加勉, 宋鸽, 刘珊珊, 郑勇. 杉木林土壤丛枝菌根真菌形态特征及孢子相关细菌多样性对模拟氮沉降和干旱的响应 [J]. 应用生态学报, 2023, 34(12): 3291-3300. |
[5] | 于贵瑞, 王永生, 杨萌. 提升生态系统质量和稳定性的生态学原理及技术途径之探讨 [J]. 应用生态学报, 2023, 34(1): 1-10. |
[6] | 李月辉, 胡远满, 王正文. 山水林田湖草沙一体化保护和修复工程与景观生态学 [J]. 应用生态学报, 2023, 34(1): 249-256. |
[7] | 邵坤仲, 吕昕培, 李佳吕, 陈佳, 赵玲玉, 任伟, 张金林. 高等植物热激转录因子生物学特性及其在非生物胁迫适应中的作用 [J]. 应用生态学报, 2022, 33(8): 2286-2296. |
[8] | 宋鸽, 王全成, 郑勇, 贺纪正. 丛枝菌根真菌对大气CO2浓度升高和增温响应研究进展 [J]. 应用生态学报, 2022, 33(6): 1709-1718. |
[9] | 于贵瑞, 王永生, 杨萌. 生态系统质量及其状态演变的生态学理论和评估方法之探索 [J]. 应用生态学报, 2022, 33(4): 865-877. |
[10] | 李月灵, 金则新, 罗光宇, 陈超, 孙中帅, 王晓燕. 干旱胁迫下接种丛枝菌根真菌对七子花非结构性碳水化合物积累及C、N、P化学计量特征的影响 [J]. 应用生态学报, 2022, 33(4): 963-971. |
[11] | 于贵瑞, 张雪梅, 赵东升, 邓思琪. 区域资源环境承载力科学概念及其生态学基础的讨论 [J]. 应用生态学报, 2022, 33(3): 577-590. |
[12] | 李玉强, 陈云, 曹雯婕, 王旭洋, 牛亚毅. 全球变化对资源环境及生态系统影响的生态学理论基础 [J]. 应用生态学报, 2022, 33(3): 603-612. |
[13] | 郑月琴, 王琼丽, 陈道钳, 陈冬梅, 曾任森, 宋圆圆. 组蛋白修饰调控植物对胁迫的记忆与警备抗性的研究进展 [J]. 应用生态学报, 2022, 33(3): 844-854. |
[14] | 陈伟强, 宋璐璐, 王鹤鸣, 石磊. 社会经济代谢研究:内涵、发现和展望 [J]. 应用生态学报, 2022, 33(12): 3186-3194. |
[15] | 杨铮, 李宏庆, 翟家宁, 张丽华, 南琼. 农业废弃物养分循环利用技术模式评估模型的研究进展 [J]. 应用生态学报, 2022, 33(12): 3213-3219. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 114
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 522
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||