[1] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3): 298-310 [Wu L-K, Lin X-M, Lin W-X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310] [2] 涂书新, 孙锦荷, 郭智芬, 等. 植物根系分泌物与根际营养关系评述. 土壤与环境, 2000, 9(1): 64-67 [Tu S-X, Sun J-H, Guo Z-F, et al. On relationship between root exudates and plant nutrition in rhizosphere. Soil and Environmental Sciences, 2000, 9(1): 64-67] [3] 周可金, 邢君, 博毓红, 等. 油菜与紫云英间混作系统的生理生态效应. 应用生态学报, 2005, 16(8): 1477-1481 [Zhou K-J, Xing J, Bo Y-H, et al. Physiological and ecological effects of inter- and mixed cropping rape with milk vetch. Chinese Journal of Applied Ecology, 2005, 16(8): 1477-1481] [4] 吴社兰, 周可金. 油菜与紫云英混作系统的密度效应研究. 作物杂志, 2008(2): 57-59 [Wu S-L, Zhou K-J. Effect of plant density of mix cropping system between rape and milk vetch. Crops, 2008(2): 57-59] [5] 宋莉, 韩上, 席莹莹, 等. 间作对油菜和紫云英生长及产量的影响. 中国油料作物学报, 2014, 36(2): 231-237 [Song L, Han S, Xi Y-Y, et al. Effects of intercropping on growth and yield of rape and Chinese milk vetch. Chinese Journal of Oil Crop Sciences, 2014, 36(2): 231-237] [6] 周泉, 王龙昌, 马淑敏, 等. 西南旱地油菜间作紫云英和秸秆覆盖的生产效应. 作物学报, 2018, 44(3): 431-441 [Zhou Q, Wang L-C, Ma S-M, et al. Influences of rape intercropping with Chinese milk vetch and straw mulching on productive benefits in dryland of Southwest China. Acta Agronomica Sinica, 2018, 44(3): 431-441] [7] 向言词, 官春云, 黄璜, 等. 作物间作对油菜积累镉与铅的影响. 水土保持学报, 2010, 24(3): 50-55 [Xiang Y-C, Guan C-Y, Huang H, et al. Effects of intercropping on accumulation of Cd and Pb in oilseed rape. Journal of Soil and Water Conservation, 2010, 24(3): 50-55] [8] 周泉, 张小短, 马淑敏, 等. 间作绿肥对油菜根际土壤碳氮及根际微生物的影响. 生态学报, 2017, 37(23): 7965-7971 [Zhou Q, Zhang X-D, Ma S-M, et al. Effects of intercropping green manure on soil carbon, nitrogen and soil microbial in rapeseed rhizosphere. Acta Ecologica Sinica, 2017, 37(23): 7965-7971] [9] 周泉, 王龙昌, 邢毅, 等. 间作紫云英下油菜根际土壤微生物群落功能特征. 应用生态学报, 2018, 29(3): 909-914 [Zhou Q, Wang L-C, Xing Y, et al. Effects of intercropping Chinese milk vetch on functional characteristics of soil microbial community in rape rhizosphere. Chinese Journal of Applied Ecology, 2018, 29(3): 909-914] [10] Zhou Q, Chen J, Xing Y, et al. Influence of intercropping Chinese milk vetch on the soil microbial community in rhizosphere of rape. Plant and Soil, 2019, 440: 85-96 [11] Paterson E, Gebbing T, Abel C, et al. Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytologist, 2007, 173: 600-610 [12] Nico E, Stefan S, Alexandre J, et al. Bacterial diversity stabilizes community productivity. PLoS One, 2012, 7(3): e34517 [13] Kind T, Wohlgemuth G, Lee DY, et al. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 2009, 81: 10038-10048 [14] 林新坚, 兰忠明, 张辉, 等. 不同紫云英基因型根系分泌物中有机酸成分分析. 草业学报, 2014, 23(4): 146-152 [Lin X-J, Lan Z-M, Zhang H, et al. Organic acid composition analysis of root exudation of Chinese milk vetch genotype. Acta Prataculturae Sinica, 2014, 23(4): 146-152] [15] 兰忠明, 林新坚, 张伟光, 等. 缺磷对紫云英根系分泌物产生及难溶性磷活化的影响. 中国农业科学, 2012, 45(8): 1521-1531 [Lan Z-M, Lin X-J, Zhang W-G, et al. Effect of P deficiency on the emergence of Astragalus L. root exudates and mobilization of sparingly soluble phosphorus. Scientia Agricultura Sinica, 2012, 45(8): 1521-1531] [16] 张红, 高亚军, 安蓉. 油菜根系分泌物的GC-MS检测方法研究. 农业资源与环境学报, 2014, 31(3): 290-295 [Zhang H, Gao Y-J, An R. Testing method of rape root exudates by GC-MS analysis. Journal of Agricultural Resources and Environment, 2014, 31(3): 290-295] [17] 杨瑞吉, 牛俊义. 磷胁迫对油菜根系分泌物的影响. 西南农业大学学报: 自然科学版, 2006, 28(6): 895-899 [Yang R-J, Niu J-Y. Effects of phosphorus deficiency on root exudation of rape (Brassica campestris L.). Journal of Southwest Agricultural University: Natural Science, 2006, 28(6): 895-899] [18] 曹卫星. 作物学通论. 北京: 高等教育出版社, 2001 [Cao W-X. General Theory of Crop Science. Beijing: Higher Education Press, 2001] [19] 姜圆圆, 郑毅, 汤利, 等. 豆科禾本科作物间作的根际生物过程研究进展. 农业资源与环境学报, 2016, 33(5): 407-415 [Jiang Y-Y, Zheng Y, Tang L, et al. Rhizosphere biological processes of legume//cereal intercropping systems: A review. Journal of Agricultural Resources and Environment, 2016, 33(5): 407-415] [20] Tang CS, Young CC. Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiology, 1982, 69: 155-160 [21] 王小兵, 骆永明, 刘五星, 等. 花生根分泌物的鉴定及其化感作用. 生态学杂志, 2011, 30(12): 2803-2808 [Wang X-B, Luo Y-M, Liu W-X, et al. Identification of peanut root exudates and their allelopathic effects. Chinese Journal of Ecology, 2011, 30(12): 2803-2808] [22] 张福锁, 申建波, 冯固, 等. 根际生态学——过程与调控. 北京: 中国农业大学出版社, 2009 [Zhang F-S, Shen J-B, Feng G, et al. Rhizosphere Ecology: Processes and Management. Beijing: China Agricultural University Press, 2009] [23] Sprent JI. Adherence of sand particles to soybean roots under water stress. New Phytologist, 1975, 74: 461-463 [24] Watt M, McCully ME, Canny MJ. Formation and stabilization of rhizosheaths of Zea mays L. Effect of soil water content. Plant Physiology, 1994, 106: 179-186 [25] Ma W, Li XX, Li CJ. Modulation of soil particle size and nutrient availability in the maize rhizosheath. Pedosphere, 2011, 21: 483-490 [26] Smith RJ, Hopper SD, Shane MW. Sand-binding roots in Haemodoraceae: Global survey and morphology in a phylogenetic context. Plant and Soil, 2011, 348: 453-470 [27] 周泉, 陈娇, 石超, 等. 秸秆覆盖下油菜间作紫云英的土壤微环境效应. 干旱地区农业研究, 2019, 37(4): 193-199 [Zhou Q, Chen J, Shi C, et al. Effects of Chinese milk vetch intercropping with rapeseed under straw mulching on soil microenvironment. Agricultural Research in the Arid Areas, 2019, 37(4): 193-199] [28] Materechera SA, Dexter AR, Alston AM. Formation of aggregates by plant roots in homogenised soils. Plant and Soil, 1992, 142: 69-79 [29] Li L, Li SM, Sun JH, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 11192-11196 [30] Gschwendtner S, Esperschütz J, Buegger F, et al. Effects of genetically modified starch metabolism in potato plants on photosynthate fluxes into the rhizosphere and on microbial degraders of root exudates. FEMS Microbio-logy Ecology, 2011, 76: 564-575 [31] Chaparro JM, Badri DV, Bakker MG, et al. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One, 2013, 8(2): e55731 |