[1] Tilman D. Biodiversity: Population versus ecosystem stability. Ecology, 1996, 77: 350-363 [2] 吕宪国. 三江平原湿地生物多样性变化及可持续利用. 北京: 科学出版社, 2009 [Lyu X-G. Wetland Biodiversity Change and Sustainable Use in the Sanjiang Plain. Beijing: Science Press, 2009] [3] 王芳, 袁兴中, 熊森, 等. 重庆澎溪河湿地自然保护区生物多样性空间格局及热点区. 应用生态学报, 2020, 31(5): 1682-1690 [Wang F, Yuan X-Z, Xiong S, et al. Spatial patterns of biodiversity and hotspots in Chongqing Pengxi River Wetland Nature Reserve, China. Chinese Journal of Applied Ecology, 2020, 31(5): 1682-1690] [4] Lou Y, Zhao K, Wang G, et al. Long-term changes in marsh vegetation in Sanjiang Plain, Northeast China. Journal of Vegetation Science, 2015, 26: 643-650 [5] Wang GD, Wang M, Lu XG, et al. Effects of farming on the soil seed banks and wetland restoration potential in Sanjiang Plain, Northeastern China. Ecological Engineering, 2015, 77: 265-274 [6] An Y, Gao Y, Tong S. Variations in vegetative characteristics of Deyeuxia angustifolia wetlands following natural restoration in the Sanjiang Plain, China. Ecological Engineering, 2018, 112: 34-40 [7] Bubier J, Costello A, Moore TR. Microtopography and methane flux in boreal peat lands, northern Ontario, Canada. Canadian Journal of Botany, 1993, 71: 1056-1063 [8] Lawrence BA, Zedler JB. Carbon storage by Carex stricta tussocks: A restorable ecosystem service? Wetlands, 2013, 33: 483-493 [9] 尹善春. 中国泥炭资源及其开发利用. 北京: 地质出版社, 1991 [Yin S-C. Development and Utilization of Peat Resources in China. Beijing: Geology Press, 1991] [10] Wang GD, Middleton B, Jiang M. Restoration potential of sedge meadows in hand-cultivated soybean fields in Northeastern China. Restoration Ecology, 2013, 21: 801-808 [11] 郎惠卿, 赵魁义, 陈克林. 中国湿地植被. 北京: 科学出版社, 1999 [Lang H-Q, Zhao K-Y, Chen K-L. Wetland Vegetation in China. Beijing: Science Press, 1999] [12] 王升忠, 王树生, 魏民. 泥炭沼泽微地貌特征及其形成的水动力机制. 东北师范大学学报: 自然科学版, 1997 (2): 83-89 [Wang S-Z, Wang S-S, Wei M. On features and hydrodynamic mechanism of forming of microland form on peatmires. Journal of Northeast Normal University: Natural Science, 1997(2): 83-89] [13] Whigham D, Verhoeven JT. Wetlands of the World: The next installment. Wetlands Ecology and Management, 2009, 17: 167-167 [14] Scotter WG, Zoltai SC. Earth hummocks in the sunshine area of the Rocky Mountains, Alberta and British-Columbia. Arctic, 1982, 35: 411-416 [15] Crampton CB. A study of the dynamics of hummocky microrelief in the Canadian north. Canadian Journal of Earth Sciences, 1977, 14: 639-649 [16] Vivian-Smith G. Microtopographic heterogeneity and floristic diversity in experimental wetland communities. Journal of Ecology, 1997, 85: 71-82 [17] Werner KJ, Zedler JB. How sedge meadow soils, microtopography, and vegetation respond to sedimentation. Wetlands, 2002, 22: 451-466 [18] 乔石英. 长白山西麓哈尼泥炭沼泽初探. 地理科学, 1993, 13(3): 279-287 [Qiao S-Y. A preliminary study on Hanni peat-mire in the west part of the Changbai Mountain. Scientia Geographica Sinica, 1993, 13(3): 279-287] [19] 赵魁义. 中国沼泽志. 北京: 科学出版社, 1999 [Zhao K-Y. Marsh of China. Beijing: Science Press, 1999] [20] 刘双双, 王铭, 董彦民, 等. 草丘微地貌对苔草泥炭沼泽枯落物分解的影响. 生态学杂志, 2018, 37(1): 95-102 [Liu S-S, Wang M, Dong Y-M, et al. The influence of hummock microtopography on plant litter decomposition in Carex peat mire. Chinese Journal of Ecology, 2018, 37(1): 95-102] [21] Yu FH, Li PX, Li SL, et al. Kobresia tibetica tussocks facilitate plant species inside them and increase diversity and reproduction. Basic & Applied Ecology, 2010, 11: 743-751 [22] Peach MA. Tussock Sedge Meadows and Topographic Heterogeneity: Ecological Patterns Underscore the Need for Experimental Approaches to Wetland Restoration Despite the Social Barriers. Master Thesis. Madison, WI, USA: University of Wisconsin, 2005 [23] 王铭, 曹议文, 王升忠, 等. 水位和草丘微地貌对巴音布鲁克高寒沼泽植物群落物种多样性的影响. 湿地科学, 2016, 14(5): 635-640 [Wang M, Cao Y-W, Wang S-Z, et al. Influence of water level and hummock microtopography on species diversity of plant communities in Bayanbulak alpine marshes. Wetland Science, 2016, 14(5): 635-640] [24] Zhao H, Wei D, Yan Y, et al. Alpine hummocks drive plant diversity and soil fertile islands on the Tibetan Plateau. Wetlands, 2020, 40: 1-11 [25] 齐清, 刘晓伟, 佟守正, 等. 苔草草丘恢复湿地的景观格局变化——以哈尔滨太阳岛为例. 生态学报, 2019, 39(14): 5261-5267 [Qi Q, Liu X-W, Tong S-Z, et al. Analysis of landscape pattern changes of restored tussock wetland in Sun Island, Harbin, China. Acta Ecologica Sinica, 2019, 39(14): 5261-5267] [26] Koelbener A, Ström L, Edwards PJ, et al. Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil. Plant and Soil, 2010, 326: 147-158 [27] Swanson DK. Interaction of mire microtopography, water supply, and peat accumulation in boreal mires. Suoseura-Finnish Peatland Society, 2007, 58: 37-47 [28] Lipson DA, Zona D, Raab TK. Water table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem. Biogeosciences Discussions, 2011, 8: 6345-6382 [29] Borin M, Salvato M. Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms. Ecological Engineering, 2012, 46: 34-42 [30] 王晓荣, 程瑞梅, 封晓辉. 三峡库区消落带回水区水淹初期土壤种子库特征. 应用生态学报, 2009, 20(12): 2891-2897 [Wang X-R, Cheng R-M, Feng X-H. Characteristics of soil seed banks in backwater area of Three Gorges Reservoir water-level-fluctuating zone at initial stage of river-flooding. Chinese Journal of Applied Ecology, 2009, 20(12): 2891-2897] [31] 刘瑞雪, 詹娟, 史志华, 等. 丹江口水库消落带土壤种子库与地上植被和环境的关系. 应用生态学报, 2013, 24(3): 801-808 [Liu R-X, Zhan J, Shi Z-H, et al. Soil seed bank and its correlations with aboveground vegetation and environmental factors in water level fluctuating zone of Danjiangkou Reservoir, Central China. Chinese Journal of Applied Ecology, 2013, 24(3): 801-808] [32] 齐清, 刘晓伟, 佟守正, 等. 人工恢复与自然恢复模式下苔草草丘生态特征比较. 应用生态学报, 2019, 30(11): 3707-3715 [Qi Q, Liu X-W, Tong S-Z, et al. Comparison of ecological characteristics of Carex tussock under natural and artificial recovery. Chinese Journal of Applied Ecology, 2019, 30(11): 3707-3715] [33] Güsewell S, Freeman C. Nutrient limitation and enzyme activities during litter decomposition of nine wetland species in relation to litter N:P ratios. Functional Ecology, 2005, 19: 582-593 [34] Bewley JD, Black M. Seeds: Physiology of Development and Germination. New York: Plenum Press, 1994 [35] Tweedy KL, Evans RO. Hydrologic characterization of two prior converted wetland restoration sites in Eastern North Carolina. Transactions of the American Society of Agricultural and Biological Engineers, 2001, 44: 1135-1142 |