[1] 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制. 微生物学通报, 2013, 40(1): 98-108 [2] Kuypers MM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16: 263-276 [3] 刘彩霞, 赵京京, 焦如珍. 杉木林土壤中固氮功能细菌的生长特性研究. 林业科学研究, 2018, 31(4): 98-103 [4] 徐鹏霞, 韩丽丽, 贺纪正, 等. 非共生生物固氮微生物分子生态学研究进展. 应用生态学报, 2017, 28(10): 3440-3450 [5] Lin YX, Ye GP, Liu DY, et al. Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic Ultisol. Soil Biology and Biochemistry, 2018, 123: 218-228 [6] Yang JG, Xie XQ, Wang X, et al. Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: E3718-E3725 [7] Tang H, Yu M, Wang YY, et al. Effects of long-term fertilization on nifH gene diversity in agricultural black soil. African Journal of Microbiology Research, 2012, 6: 2659-2666 [8] Laskar F, Sharma GD, Deb B. Biodiversity of diazotrophs Derxia and Beijerinckia in the rhizospheric and nonrhizospheric soils of rice plant: A review. Assam University Journal of Science and Technology, 2010, 5: 154-162 [9] 赵辉, 周运超. 不同母岩发育马尾松土壤固氮菌群落结构和丰度特征. 生态学报, 2020, 40(17): 6189-6201 [10] 文都日乐, 李刚, 杨殿林, 等. 呼伦贝尔草原土壤固氮微生物nifH基因多样性与群落结构. 生态学杂志, 2011, 30(4): 790-797 [11] Alfaro-Espinoza G, Ullrich MS. Bacterial N2-fixation in mangrove ecosystems: Insights from a diazotroph-mangrove interaction. Frontiers in Microbiology, 2015, 6: 445 [12] Cheng W, Parton WJ, Gonzalez-Meler MA, et al. Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 2014, 201: 31-44 [13] FAO. The State of the World’s Forests 2018-Forest Pathways to Sustainable Development. Rome: FAO, 2018 [14] Cleveland CC, Townsend AR, Schimel DS, et al. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles, 1999, 13: 623-645 [15] 国家林业局. 第八次全国森林资源清查结果. 林业资源管理, 2014(1): 1-2 [16] 周燕, 刘彩霞, 徐秋芳, 等. 毛竹入侵森林对固氮微生物群落结构和丰度的影响. 植物营养与肥料学报, 2018, 24(4): 1047-1057 [17] Zheng MH, Chen H, Li DJ, et al. Substrate stoichiometry determines nitrogen fixation throughout succession in southern Chinese forests. Ecology Letters, 2020, 23: 336-347 [18] Li X, Luo XS, Wang AC, et al. Control factors of soil diazotrophic community assembly and nitrogen fixation rate across eastern China. Geoderma, 2023, 432: 116410 [19] Xu TL, Shen YW, Ding ZJ, et al. Seasonal dynamics of microbial communities in rhizosphere and bulk soils of two temperate forests. Rhizosphere, 2023, 25: 100673 [20] 邓米林, 叶桂萍, 胥超, 等. 天然林转人工林对亚热带森林土壤团聚体中亚硝酸盐还原基因丰度的影响. 应用生态学报, 2023, 34(1): 25-30 [21] Zhou JN, Fang YT, Zheng MH, et al. Microbial controls on symbiotic and free-living N2 fixation in subtropical Pueraria lobata communities, southwest China. Biogeochemistry, 2023, 163: 85-97 [22] 宛颂, 段春健, 樊剑波, 等. 旱地红壤反硝化功能基因丰度对长期施肥的响应. 应用生态学报, 2020, 31(11): 3729-3736 [23] 史策, 聂立水, 魏一凡, 等. 北京海坨山典型林分土壤固氮菌群落特征研究. 林业科学研究, 2022, 35(4): 153-161 [24] Yarwood S, Wick A, Williams M, et al. Parent material and vegetation influence soil microbial community structure following 30-years of rock weathering and pedogenesis. Microbial Ecology, 2015, 69: 383-394 [25] Nelson DR, Mele PM. The impact of crop residue amendments and lime on microbial community structure and nitrogen-fixing bacteria in the wheat rhizosphere. Australian Journal of Soil Research, 2006, 44: 319-329 [26] 沈秋兰, 何冬华, 徐秋芳, 等. 阔叶林改种毛竹(Phyllostachys pubescens)后土壤固氮细菌nifH基因多样性的变化. 植物营养与肥料学报, 2016, 22(3): 687-696 [27] Zhang J, Zheng M, Zhang Y, et al. Soil phosphorus availability affects diazotroph communities during vegetation succession in lowland subtropical forests. Applied Soil Ecology, 2021, 166: 104009 [28] Vance CP, Graham PH, Allan DL. Biological nitrogen fixation: Phosphorus: A critical future need?// Pedrosa FO, Hungria M, Yates G, eds. Nitrogen Fixation: From Molecules to Crop Productivity. Amsterdam, the Netherlands: Springer, 2002: 509-514 [29] Yeager CM, Kornosky JL, Housman DC, et al. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Applied and Environmental Microbiology, 2004, 70: 973-983 [30] Reed SC, Cleveland CC, Townsend AR. Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annual Review of Ecology, Evolution & Systematics, 2011, 42: 489-512 [31] Hessen DO, Elser JJ, Sterner RW, et al. Ecological stoichiometry: An elementary approach using basic principles. Limnology & Oceanography, 2013, 58: 2219-2236 [32] Yang Y, Wang N, Guo XY, et al. Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS One, 2017, 12(5): e0178425 [33] Vitousek PM, Hobbie S. Heterotrophic nitrogen fixation in decomposing litter: Patterns and regulation. Ecology, 2000, 81: 2366-2376 [34] 刘璐, 蒋慧丹, 张鑫, 等. 野葛根际固氮微生物群落分布特征及其影响因素. 微生物学报, 2022, 62(2): 590-601 [35] 罗振鹏, 谢芳. 硝酸盐调控豆科植物与根瘤菌共生固氮的机制研究. 生物技术通报, 2019, 35(10): 34-39 [36] Bazylinski DA, Dean AJ, Schüler D, et al. N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environmental Microbiology, 2000, 2: 266-273 |