[1] 环境保护部, 国土资源部.全国土壤污染状况调查公报[EB/OL]. (2014-04-17)[2019-05-11]. http://www.mee.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm [Ministry of Environmental Protection, Ministry of Land and Resources. National Survey Bulletin on Soil Pollution [EB/OL]. (2014-04-17) [2019-05-11]. http://www.mee.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm] [2] 龙新宪, 杨肖娥, 倪吾钟. 重金属污染土壤修复技术研究的现状与展望. 应用生态学报, 2002, 13(6): 757-762 [Long X-X, Yang X-E, Ni W-Z. Current situa-tion and prospect on the remediation of soils contaminated by heavy metals. Chinese Journal of Applied Ecology, 2002, 13(6):757-762] [3] Hu Y, Wang NS, Hu XJ, et al. Nitrate nutrition enhances nickel accumulation and toxicity in Arabidopsis plants. Plant and Soil, 2013, 371: 105-115 [4] He B, Chen L, Deng JQ, et al. Effect of different N fertilizers on the growth of Sedum alfredii and heavy metal accumulation. Journal of Southern Agriculture, 2013, 44: 797-801 [5] Cheng M, Wang P, Kopittke PM, et al. Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation. Journal of Experimental Botany, 2016, 67: 5041-5050 [6] Wang YH, Ai SY, Li MJ, et al. Effect of nitrogen fertilization on cadmium translocation in soil-mustard system. Chinese Journal of Eco-Agriculture, 2010, 18: 649-653 [7] 潘维, 徐茜茹, 卢琪, 等. 不同氮形态对镉胁迫下小白菜生长及镉含量的影响. 植物营养与肥料学报, 2017, 23(4): 973-982 [Pan W, Xu Q-R, Lu Q, et al. Effects of different instant soluble nitrogen fertilizers on plant growth and Cd concentration in pakchoi (Brassica chinensis L.) under Cd stress. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 973-982] [8] Luo BF, Du ST, Lu KX, et al. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. Journal of Experi-mental Botany, 2012, 63: 3127-3136 [9] 商照聪, 高子勤. 双氰胺对碳酸氢铵在土壤中氮素转化的影响. 应用生态学报, 1999, 10(2): 183-185 [Shang Z-C, Gao Z-Q. Effect of dicyandiamide on nitrogen transformation of ammonium bicarbonate in soil. Chinese Journal of Applied Ecology, 1999, 10(2): 183-185] [10] 徐星凯, 王子健, 刘琰, 等. 稀土元素对土壤中尿素水解及其水解产物行为的影响. 应用生态学报, 2001, 12(5): 739-742 [Xu X-K, Wang Z-J, Liu Y, et al. Influences of rare earths on the hydrolysis of urea and its hydrolyzed product in soil. Chinese Journal of Applied Ecology, 2001, 12(5): 739-742] [11] Shahid M, Dumat C, Khalid S, et al. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Reviews of Environmental Contamination and Toxicology, 2016, 241: 73-137 [12] 铁梅, 梁彦秋, 臧树良, 等. 工业污染土壤中镉的化学形态及植物修复研究. 应用生态学报, 2006, 17(2): 348-350 [Tie M, Liang Y-Q, Zang S-L, et al. Chemical forms of cadmium in industrial contaminated soil and its phytoremediation. Chinese Journal of Applied Ecology, 2006, 17(2): 348-350] [13] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005 [Bao S-D. Soil and Agricultural Chemistry Analysis. Beijing: Chinese Agriculture Press, 2005] [14] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000 [Lu R-K. Soil Agrochemistry Analytical Methods. Beijing: Chinese Agricultural Science and Technology Press, 2000] [15] 中华人民共和国生态环境部. 土壤环境质量农用地土壤污染风险管控标准(GB 15618—2018)[EB/OL]. (2018-06-28) [2019-05-11]. http://datacenter.mee.gov.cn/websjzx/report/list.vm [Ministry of Ecology and Environment of the People’s Republic of China (MEE). Soil Environmental Quality Risk Control Stan-dard for Soil Contamination of Agricultural Land (GB 15618-2018)[EB/OL]. (2018-06-28) [2019-05-11] [16] Chen S, Zhu Y, Shao T, et al. Relationship between rhizosphere soil properties and disease severity in highbush blueberry (Vaccinium corymbosum). Applied Soil Ecology, 2019, 137: 187-194 [17] Yang XE, Long XX, Ye HB, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulation and plant species (Sedum alfredii Hance). Plant and Soil, 2004, 259: 181-189 [18] Zhang RR, Liu Y, Xue WL, et al. Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil. Environmental Science and Pollution Research, 2016, 23: 25074-25083 [19] Yan H, Filardo F, Hu XT, et al. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves. Environment Science and Pollution Research, 2016, 23: 3758-3769 [20] Hossain MA, Hasanuzzaman M, Fujita M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants, 2010, 16: 259-272 [21] Gill SS, Khan NA, Tuteja N. Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars: An evaluation of the role of antioxidant machinery. Plant Signaling and Behavior, 2011, 6: 293-300 [22] Mattina MI, Lannucci BW, Musante C, et al. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 2003, 124: 375-378 [23] Jiang L, Yang Y, Zhang Y, et al. Accumulation and toxicological effects of nonylphenol in tomato (Solanum lycopersicum L.) plants. Scientific Reports, 2019, 9: 7022 [24] Caird MA, Richards JH, Donovan LA. Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiology, 2006, 143: 4-10 [25] Christophe L, Michiel H, Jaco V, et al. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Frontiers in Plant Science, 2017, 8: 1867 [26] 戴宇, 贺纪正, 沈菊培. 双氰胺在农业生态系统中的应用效果及其影响因素. 应用生态学报, 2013, 24(1): 279-286 [Dai Y, He J-Z, Shen J-P. Effects and influence factors of dicyandiamide (DCD) application in agricultural ecosystem. Chinese Journal of Applied Ecology, 2013, 24(1): 279-286] [27] Thomson CJ, Marschner H, Römheld V. Effect of nitrogen fertilizer form on pH of the bulk soil and rhizosphere, and on the growth, phosphorus, and micronu-trient uptake of bean. Journal of Plant Nutrition, 1993, 16: 493-506 [28] Cabrera ML, Kissel DE, Bock BR. Urea hydrolysis in soil: Effects of urea concentration and soil pH. Soil Bio-logy and Biochemistry, 1991, 23: 1121-1124 [29] Jiang J, Xu RK, Qian W, et al. Inhibiting effect of dicyandiamide on soil acidification induced by application of urea or ammonium bicarbonate. Communications in Soil Science and Plant Analysis, 2014, 45: 1823-1830 [30] Jackson AP, Alloway BJ. The bioavailability of cadmium to lettuce and cabbage in soils previously treated with sewage sludges. Plant and Soil, 1991, 132: 179-186 [31] Zhu H, Chen C, Xu C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environmental Pollution, 2016, 219: 99-106 [32] 易蔓, 韦慧琴, 胡梦坤, 等. 氮素形态对烟草根际镉的有效性及镉吸收的影响. 环境工程学报, 2016, 10(2): 941-947 [Yi M, Wei H-Q, Hu M-K, et al. Effects of nitrogen forms on bioavailability of cadmium in rhizosphere and its uptake by tobacco. Chinese Journal of Environmental Engineering, 2016, 10(2): 941-947] [33] Xie HL, Jiang RF, Zhang FS, et al. Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 2009, 318: 205-215 [34] Arnamwong S, Wu LH, Hu PJ, et al. Phytoextraction of cadmium and zinc by Sedum plumbizincicola using diffe-rent nitrogen fertilizers, a nitrification inhibitor and a urease inhibitor. International Journal of Phytoremediation, 2015, 17: 382-390 [35] 刘安辉, 赵鲁, 李旭军. 氮肥对镉污染土壤上小油菜生长及镉吸收特征的影响. 中国土壤与肥料, 2014(2): 77-81 [Liu A-H, Zhao L, Li X-J. Effect of nitrogen fertilizer on rape growth and uptake characteristics of cadmium. Soil and Fertilizer Sciences in China, 2014(2): 77-81] [36] Liu WX, Zhang CJ, Hu PJ, et al. Influence of nitrogen form on the phytoextraction of cadmium by a newly discovered hyperaccumulator Carpobrotus rossii. Environmental Science and Pollution Research, 2016, 23: 1246-1253 |