[1] Liu JB, Chen J, Chen GS, et al. Enzyme stoichiometry indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests. PLoS One, 2020, 15(2): e0220599 [2] 林惠瑛, 周嘉聪, 曾泉鑫, 等. 土壤酶计量揭示了武夷山黄山松林土壤微生物沿海拔梯度的碳磷限制变化. 应用生态学报, 2022, 33(1): 33-41 [3] Manzoni S, Capek P, Mooshammer M. et al. Optimal metabolic regulation along resource stoichiometry gradients. Ecology Letters, 2017, 20: 1182-1191 [4] Crowther TW, Van Den Hoogen J, Wan J, et al. The global soil community and its influence on biogeochemistry. Science, 2019, 365: eaav0550 [5] Feyissa A, Gurmesa GA, Yang F, et al. Soil enzyme activity and stoichiometry in secondary grasslands along a climatic gradient of subtropical China. Science of the Total Environment, 2022, 825: 154019 [6] Zeng Q, Chen Z, Tan W. Plant litter quality regulates soil eco-enzymatic stoichiometry and microbial nutrient limitation in a citrus orchard. Plant and Soil, 2021, 466: 179-191 [7] Feyissa A, Yang F, Wu J, et al. Soil nitrogen dynamics at a regional scale along a precipitation gradient in secondary grassland of China. Science of the Total Environment, 2021, 781: 146736 [8] Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciencesof the United States of America, 2004, 101: 11001-11006 [9] Allison SD. A trait-based approach for modelling microbial litter decomposition. Ecology Letters, 2012, 15: 1058-1070 [10] 孙奔, 周运超, 邓梅, 等. 不同林龄油茶林土壤酶化学计量特征及微生物养分限制因素. 应用生态学报, 2024, 35(5): 1233-1241 [11] 王薪琪, 王传宽, 韩轶. 树种对土壤有机碳密度的影响: 5种温带树种同质园试验. 植物生态学报, 2015, 39(11): 1033-1043 [12] 吴秋霞, 吴福忠, 胡仪, 等. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较. 植物生态学报, 2021, 45(7): 771-779 [13] 袁春阳, 李济宏, 韩鑫, 等. 同质园不同树种对土壤酶活性及其化学计量比的影响. 应用与环境生物学报, 2023, 29(6): 1426-1433 [14] 魏书蒙, 陈详腾, 赵光宇, 等. 杉木人工林近自然改造对土壤化学性质及酶活性的影响. 生态学报, 2024, 44(10): 1-11 [15] 艾灵, 吴福忠, 樊雪波, 等. 米槠和杉木人工林土壤酶活性和酶化学计量特征对凋落物输入的短期响应. 应用生态学报, 2024,35(3): 631-638 [16] 周嘉聪, 刘小飞, 郑永, 等. 氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响. 生态学报, 2017, 37(1): 127-135 [17] 范跃新. 氮沉降对中亚热带米槠天然林土壤磷组分的影响及其调控机理. 博士论文. 福州: 福建师范大学, 2019 [18] 张慧玲, 张耀艺, 彭清清, 等. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异. 植物生态学报, 2023, 47(7): 978-987 [19] 鲍士旦. 土壤农业化学分析. 第3版. 北京: 北京农业出版社, 2000: 11-14 [20] 苏涛, 司美茹, 王朝辉, 等. 土壤矿质氮分析方法的影响因素研究. 农业环境科学学报, 2005, 24(6):1238-1242 [21] Vance ED, Brookes PC, Jemkinson DS. Microbial biomass measurements in forest soils: The use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biology and Biochemistry, 1987, 19: 697 [22] Jones D, Willett V. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 2006, 38: 991-999 [23] Carter MR, Gregorich EG. Soil Sampling and Methods of Analysis. Boca Raton, FL, USA: CRC Press, 1993: 20-23 [24] Bell CW, Fricks BE, Rocca JD, et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. Journal of Visualized Experiments, 2013, 81: e50961 [25] 夏允, 施佳淇, 肖华翠, 等. 亚热带砂岩发育森林土壤酚氧化酶活性测定方法优化. 应用生态学报, 2022, 33(5):1223-1232 [26] Moorhead DL, Sinsabaugh RL, Hill BH, et al. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology and Biochemistry, 2016, 93: 1-7 [27] Cai X, Lin Z, Penttinen P, et al. Effects of conversion from a natural evergreen broadleaf forest to a moso bamboo plantation on the soil nutrient pools, microbial biomass and enzyme activities in a subtropical area. Forest Ecology and Management, 2018, 422: 161-171 [28] Yi J, Zeng Q, Mei T, et al. Disentangling drivers of soil microbial nutrient limitation in intensive agricultural and natural ecosystems. Science of the Total Environment, 2022, 806: 150555 [29] Yin L, Dijkstra FA, Wang P, et al. Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition. New Phytologist, 2018, 218: 1036-1048 [30] 王薪琪, 王传宽, 张泰东. 森林土壤碳氮循环过程的新视角: 丛枝与外生菌根树种的作用. 植物生态学报, 2017, 41(10): 1113-1125 [31] 康自佳, 吴福忠, 吴秋霞, 等. 米槠、杉木和马尾松凋落叶和凋落枝碳氮含量及归还特征. 应用与环境生物学报, 2023, 29(3): 639-646 [32] 彭晓, 方晰, 喻林华, 等. 中亚热带4种森林土壤碳、氮、磷化学计量特征. 中南林业科技大学学报, 2016, 36(11): 65-72 [33] 路翔, 项文化, 刘聪. 中亚热带4种森林类型土壤有机碳氮贮量及分布特征. 水土保持学报, 2012, 26(3): 169-173 [34] Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology, 2007, 88: 1386-1394 [35] Allison SD, Vitousek PM. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry, 2005, 37: 937-944 [36] 李佳玉, 施秀珍, 李帅军, 等. 杉木人工林和天然次生林林龄对土壤酶活性的影响. 应用生态学报, 2024, 35(2): 339-346 [37] Feyissa A, Chen R, Cheng X. Afforestation inhibited soil microbial activities along the riparian zone of the upper Yangtze River of China. Forest Ecology and Management, 2023, 538: 120998 [38] 陈月鹏, 李石开, 安波, 等. 亚热带树种的菌根和根外菌丝对土壤氮矿化及酶活性的影响. 应用生态学报, 2023, 34(5): 1235-1243 [39] Duckworth CMS, Cresser MS. Factors influencing nitrogen retention in forest soils. Environmental Pollution, 1991, 72: 1-21 [40] Schimel JP, Weintraub MN. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. Soil Biology and Biochemistry, 2003, 35: 549-563 [41] 章允清. 毛红椿和杉木混交幼林对不同施肥措施的生长响应. 福建林业科技, 2023, 50(4): 66-71 [42] 张月华, 张凤英, 邓鑫欣, 等. 农业耕作和外来植物入侵对金沙江下游库区新生消落带土壤养分和酶活性的影响. 环境科学研究, 2024, 37: DOI: 10.13198/j.issn.1001-6929.2024.01.11 [43] 李东, 田秋香, 赵小祥, 等. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征. 植物生态学报, 2022, 46(2): 232-242 [44] 胡宗达, 刘世荣, 罗明霞, 等. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征. 植物生态学报, 2020, 44(9): 973-985 [45] 王娇月, 宋长春, 王宪伟, 等. 冻融作用对土壤有机碳库及微生物的影响研究进展. 冰川冻土, 2011, 33(2): 442-452 [46] Jing X, Chen X, Tang M, et al. Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests. Science of the Total Environment, 2017, 607: 806-815 [47] 张珊珊, 袁春明. 土壤水分和光强对景东翅子树幼苗生长及光合特性的影响. 植物研究, 2022, 42(3): 502-511 |