[1] Li P, Li YB, Xu LY, et al. Crop yield-soil quality balance in double cropping in China’s upland by orga-nic amendments: A meta-analysis. Geoderma, 2021, 403: 115197 [2] 李娜, 龙静泓, 韩晓增, 等. 短期翻耕和有机物还田对东北暗棕壤物理性质和玉米产量的影响. 农业工程学报, 2021, 37(12): 99-107 [3] Cai AD, Liang GP, Zhang XB, et al. Long-term straw decomposition in agro-ecosystems described by a unified three exponentiation equation with thermal time. Science of the Total Environment, 2018, 636: 699-708 [4] 雷琬莹, 李娜, 滕培基, 等. 农田生态系统有机物料腐解过程及土壤培肥机制研究. 中国生态农业学报, 2022, 30(9): 1393-1408 [5] Azeem M, Sun TR, Jeyasundar PGSA, et al. Biochar-derived dissolved organic matter (BDOM) and its influence on soil microbial community composition, function, and activity: A review. Critical Reviews in Environmental Science and Technology, 2023, 53: 1912-1934 [6] Ding Y, Shi ZQ, Ye QT, et al. Chemodiversity of soil dissolved organic matter. Environmental Science & Technology, 2020, 54: 6174-6184 [7] Zhang SQ, Yin YG, Yang PJ, et al. Using the end-member mixing model to evaluate biogeochemical reactivities of dissolved organic matter (DOM): Autochthonous versus allochthonous origins. Water Research, 2023, 232: 119644 [8] 敖静, 王涛, 常瑞英. 三维荧光光谱法在土壤溶解性有机质组分解析中的应用. 土壤通报, 2022, 53(3): 738-746 [9] 张海晶, 王少杰, 田春杰, 等. 玉米秸秆及其生物炭对东北黑土溶解有机质特性的影响. 水土保持学报, 2021, 35(2): 243-250 [10] Xu L, Hu Q, Jian MF, et al. Exploring the optical properties and molecular characteristics of dissolved organic matter in a large river-connected lake (Poyang Lake, China) using optical spectroscopy and FT-ICR MS analysis. Science of the Total Environment, 2023, 879: 162999 [11] 李艳, 魏丹, 王伟, 等. 秸秆-牛粪发酵过程中溶解性有机质的荧光光谱特征. 光谱学与光谱分析, 2021, 41(9): 2846-2852 [12] 雷琬莹, 滕培基, 王博, 等. 东北黑土区不同种类有机物料腐解特征及驱动因素分析. 农业工程学报, 2024, 40(13): 119-128 [13] 李财生, 吴月颖, 陈丽铭, 等. 不同来源有机肥释放的溶解有机质粒径分布与光谱特征. 植物营养与肥料学报, 2022, 28(6): 961-971 [14] 尹英杰, 商建英. 农作物秸秆腐解规律及其可溶性有机质特征[EB/OL]. (2024-06-25) [2024-07-02]. 土壤学报, DOI: 10.11766/trxb202311130472 [15] Tang G, Li BR, Zhang BW, et al. Temperature effects on microbial dissolved organic matter metabolisms: Linking size fractions, fluorescent compositions, and functional groups. Science of the Total Environment, 2023, 864: 161175 [16] Ren LH, Yan BH, Awasthi MK, et al. Accelerated humification and alteration of microbial communities by distillers’ grains addition during rice straw composting. Bioresource Technology, 2021, 342: 125937 [17] 田翔, 何天容, 尹德良, 等. 土壤溶解性有机质结构和组成对秸秆、牛粪及其堆肥产品输入的响应特征. 农业资源与环境学报, 2022, 39(3): 556-566 [18] Wei JR, Shangguan HY, Shen C, et al. Deciphering the structural characteristics and molecular transformation of dissolved organic matter during the electrolytic oxygen aerobic composting process. Science of the Total Environment, 2022, 845: 157174 [19] Wang XY, Liang C, Mao JD, et al. Microbial keystone taxa drive succession of plant residue chemistry. The ISME Journal, 2023, 17: 748-757 [20] 陈莎. 农用有机物料中溶解性有机质的光谱特性及其对水体汞光还原的影响. 硕士论文. 重庆: 西南大学, 2022 [21] Carvalho AM, Bustamante MMC, Alcntaraf A, et al. Characterization by solid-state CPMAS 13C NMR spectroscopy of decomposing plant residues in conventional and no-tillage systems in Central Brazil. Soil and Tillage Research, 2009, 102: 144-150 [22] Shang YX, Song KS, Lai FY, et al. Remote sensing of fluorescent humification levels and its potential environmental linkages in lakes across China. Water Research, 2023, 230: 119540 [23] Kong XL, Luo GW, Yan BH, et al. Dissolved organic matter evolution can reflect the maturity of compost: Insight into common composting technology and material composition. Journal of Environmental Management, 2023, 326: 116747 [24] 李然, 徐明岗, 孙楠, 等. 不同碳氮比下秸秆腐解与养分释放的动力学特征. 中国农业科学, 2023, 56(11): 2118-2128 [25] 马想, 徐明岗, 赵惠丽, 等. 我国典型农田土壤中有机物料腐解特征及驱动因子. 中国农业科学, 2019, 52(9): 1564-1573 [26] Shi C, Zhang QW, Yu BW. Higher improvement in soil health by animal-sourced than plant-sourced organic materials through optimized substitution. Agriculture, Ecosystems and Environment, 2024, 363: 108875 [27] Liu JB, Wang N, Manabu FJ, et al. Insights into the roles of DOM in humification during sludge composting: Comprehensive chemoinformatic analysis using FT-ICR mass spectrometry. Chemical Engineering Journal, 2023, 475: 146024 [28] Gao X, Zhang J, Liu GL, et al. Enhancing the transformation of carbon and nitrogen organics to humus in composting: Biotic and abiotic synergy mediated by mineral material. Bioresource Technology, 2023, 393: 130126 [29] Qian X, Bi XH, Xu YF, et al. Variation in community structure and network characteristics of spent mushroom substrate (SMS) compost microbiota driven by time and environmental conditions. Bioresource Technology, 2022, 364: 127915 [30] Kohl L, Myers-PIGG A, Edwards KA, et al. Microbial inputs at the litter layer translate climate into altered organic matter properties. Global Change Biology, 2021, 27: 435-453 [31] 李德近, 马想, 孙悦, 等. 典型区域秸秆和有机肥混土填埋后的腐解特征. 中国农业科学, 2023, 56(6): 1127-1138 [32] Zhou XR, Ma AZ, Chen XK, et al. Climate warming-driven changes in the molecular composition of soil dissolved organic matter across depth: A case study on the Tibetan Plateau. Environmental Science & Technology, 2023, 57: 16884-16894 [33] 缪闯和, 吕贻忠, 于越, 等. 基于光谱学方法研究土壤对堆肥中可溶性有机物的吸附行为. 光谱学与光谱分析, 2020, 40(12): 3832-3838 [34] Dai ZM, Zang HD, Chen J, et al. Metagenomic insights into soil microbial communities involved in carbon cycling along an elevation climosequences. Environmental Microbiology, 2021, 23: 4631-4645 [35] 张雅琪, 陈林庞, 丹波, 等. 土壤微生物群落对枯落物输入的响应. 应用生态学报, 2022, 33(11): 2943-2953 [36] 逄梦璇, 刘红文, 韩旭, 等. 典型黑土带玉米农田土壤微生物群落地理分布及驱动因素. 土壤与作物, 2024, 13(1): 1-12 [37] Wang C, Wang X, Zhang Y, et al. Integrating microbial community properties, biomass and necromass to predict cropland soil organic carbon. ISME Communications, 2023, 3: 86 |