应用生态学报 ›› 2020, Vol. 31 ›› Issue (7): 2151-2160.doi: 10.13287/j.1001-9332.202007.017
张月白, 娄永根*
收稿日期:
2020-04-15
接受日期:
2020-05-24
出版日期:
2020-07-15
发布日期:
2021-01-15
通讯作者:
E-mail: yglou@zju.edu.cn
作者简介:
张月白, 女, 1993年生, 博士研究生。主要从昆虫化学与分子生态学研究。E-mail: zyb601@msn.cn
基金资助:
ZHANG Yue-bai, LOU Yong-gen*
Received:
2020-04-15
Accepted:
2020-05-24
Online:
2020-07-15
Published:
2021-01-15
Contact:
E-mail: yglou@zju.edu.cn
Supported by:
摘要: 植物与植食性昆虫之间存在着复杂的化学相互作用。一方面,当遭受植食性昆虫为害时,植物能识别植食性昆虫相关分子模式,触发早期信号事件和激素信号转导途径,并由此引起转录组与代谢组重组、直接和间接防御化合物含量升高,最后提高对植食性昆虫的抗性。另一方面,植食性昆虫也能识别植物的防御反应,并能通过分泌效应子、选贮、解毒以及降低敏感性等反防御措施抑制或适应植物的化学防御。深入剖析植物与植食性昆虫的化学互作,不仅可在理论上丰富对昆虫与植物互作关系的理解,而且可在实践上为作物害虫防控新技术的开发提供重要的理论与技术指导。
张月白, 娄永根. 植物与植食性昆虫化学互作研究进展[J]. 应用生态学报, 2020, 31(7): 2151-2160.
ZHANG Yue-bai, LOU Yong-gen. Research progress in chemical interactions between plants and phytophagous insects[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2151-2160.
[1] Erb M, Reymond P. Molecular interactions between plants and insect herbivores. Annual Review of Plant Biology, 2019, 70: 527-557 [2] Schuman MC, Baldwin IT. The layers of plant responses to insect herbivores. Annual Review of Entomology, 2016, 61: 373-394 [3] Alborn HT, Turings CJT, Jones TH, et al. An elicitor of plant volatiles from beet armyworm oral secretion. Science, 1997, 276: 945-949 [4] 禹海鑫, 叶文丰, 孙民琴, 等. 植物与植食性昆虫防御与反防御的三个层次. 生态学杂志, 2015, 34(1): 256-262 [Yu H-X, Ye W-F, Sun M-Q, et al. Three levels of defense and anti-defense responses between host plants and herbivorous insects. Chinese Journal of Ecology, 2015, 34(1): 256-262] [5] Mattiacci L, Dicke M, Posthumus MA. β-Glucosidase: An elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92: 2036-2040 [6] Schmelz EA, Leclere S, Carroll MJ, et al. Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory. Plant Physiology, 2007, 144: 793-805 [7] Iida J, Desaki Y, Hata K, et al. Tetranins: New putative spider mite elicitors of host plant defense. New Phytologist, 2019, 224: 875-885 [8] Shangguan XX, Zhang J, Liu BF, et al. A mucin-like protein of planthopper is required for feeding and induces immunity response in plants. Plant Physiology, 2018, 176: 552-565 [9] Liu Y, Wang WL, Guo GX, et al. Volatile emission in wheat and parasitism by Aphidius avenae after exogenous application of salivary enzymes of Sitobion avenae. Entomologia Experimentalis et Applicata, 2009, 130: 215-221 [10] Guo H, Wielsch N, Hafke JB, et al. A porin-like protein from oral secretions of Spodoptera littoralis larvae induces defense-related early events in plant leaves. Insect Biochemistry and Molecular Biology, 2013, 43: 849-858 [11] Chaudhary R, Atamian HS, Shen Z, et al. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 8919-8924 [12] Bricchi I, Occhipinti A, Bertea CM, et al. Separation of early and late responses to herbivory in Arabidopsis by changing plasmodesmal function. The Plant Journal, 2013, 73: 14-25 [13] Gaquerel E, Weinhold A, Baldwin IT. Molecular intera-ctions between the specialist herbivore Manduca sexta (Lepidoptera, Sphigidae) and its natural host Nicotiana attenuata. VIII. An unbiased GCxGC-ToFMS analysis of the plant's elicited volatile emissions. Plant Physiology, 2009, 149: 1408-1423 [14] Alborn HT, Hansen TV, Jones TH, et al. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 12976-12981 [15] Fatouros NE, Pashalidou FG, Aponte Cordero WV, et al. Anti-aphrodisiac compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone production. Journal of Chemical Ecology, 2009, 35: 1373-1381 [16] Yang J, Nakayama N, Toda K, et al. Structural determination of elicitors in Sogatella furcifera (Horváth) that induce Japonica rice plant varieties (Oryza sativa L.) to produce an ovicidal substance against S. furcifera eggs. Bioscience, Biotechnology, and Biochemistry, 2014, 78: 937-942 [17] Doss RP, Oliver JE, Proebsting WM, et al. Bruchins: Insect-derived plant regulators that stimulate neoplasm formation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 6218-6223 [18] Abdul Malik NA, Kumar IS, Nadarajah K. Elicitor and receptor molecules: Orchestrators of plant defense and immunity. International Journal of Molecular Sciences, 2020, 21: 963, https://doi.org/10.3390/ijms21030963 [19] Gouhier-Darimont C, Schmiesing A, Bonnet C, et al. Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity. Journal of Experimental Botany, 2013, 64: 665-674 [20] Liu YQ, Wu H, Chen H, et al. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nature Biotechnology, 2015, 33: 301-305 [21] Prince DC, Drurey C, Zipfel C, et al. The leucine-rich repeat receptor-like kinase brassinosteroid insensitive1-associated kinase1 and the cytochrome P450 phytoalexin deficient3 contribute to innate immunity to aphids in Arabidopsis. Plant Physiology, 2014, 164: 2207-2219 [22] Hu LF, Ye M, Kuai P, et al. OsLRR-RLK1, an early responsive leucine-rich repeat receptor-like kinase, initiates rice defense responses against a chewing herbivore. New Phytologist, 2018, 219: 1097-1111 [23] Wu J, Baldwin IT. New insights into plant responses to the attack from insect herbivores. Annual Review of Genetics, 2010, 44: 1-24 [24] Nguyen D, Rieu I, Mariani C, et al. How plants handle multiple stresses: Hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Molecular Biology, 2016, 91: 727-740 [25] Raja V, Majeed U, Kang H, et al. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany, 2017, 137: 142-157 [26] Aldon D, Mbengue M, Christian M, et al. Calcium signalling in plant biotic interactions. International Journal of Molecular Sciences, 2018, 19: 665, doi: 10.3390/ijms19030665 [27] Bartram S, Jux A, Gleixner G, et al. Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves. Phytochemistry, 2006, 67: 1661-1672 [28] Boachon B, Junker RR, Miesch L, et al. CYP76C1 (Cytochrome P450)-mediated linalool metabolism and the formation of volatile and soluble linalool oxides in Arabidopsis flowers: A strategy for defense against floral antagonists. The Plant Cell, 2015, 2015: 315-399 [29] Thomas AM, Williams RS, Swarthout RF. Distribution of the specialist aphid Uroleucon nigrotuberculatum (Homoptera: Aphididae) in response to host plant semiochemical induction by the gall fly Eurosta solidaginis (Diptera: Tephritidae). Environmental Entomology, 2019, 48: 1138-1148 [30] Huang XX, Xiao YT, Köllner TG, et al. The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores. Plant, Cell & Environment, 2018, 41: 261-274 [31] 戈林泉, 周国鑫, 王祺, 等. 水稻β-石竹烯合成酶基因OsCAS的克隆鉴定、原核表达及其遗传转化. 浙江大学学报, 2009, 35(4): 365-371 [Ge L-Q, Zhou G-X, Wang Q, et al. Cloning and prokaryotic expression of rice gene encoding β-caryophyllene synthase and its genetic transformation. Journal of Zhejiang University, 2009, 35(4): 365-371] [32] Cheng A, Xiang C, Li JX, et al. The rice (E)-β-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry, 2007, 68: 1632-1641 [33] Mumm R, Schrank K, Wegener R, et al. Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. Journal of Chemical Ecology, 2003, 29: 1235-1252 [34] Schmelz EA, Huffaker A, Sims JW, et al. Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. The Plant Journal, 2014, 79: 659-678 [35] Dafoe NJ, Huffaker A, Vaughan MM, et al. Rapidly induced chemical defenses in maize stems and their effects on short-term growth of Ostrinia nubilalis. Journal of Chemical Ecology, 2011, 37: 984-991 [36] Schmelz EA, Kaplan F, Huffaker A, et al. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 5455-5460 [37] Murakami S, Nakata R, Aboshi T, et al. Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Metabolites, 2014, 4: 532-546 [38] Li Z, Guan XM, Michaud JP, et al. Quercetin interacts with Cry1Ac protein to affect larval growth and survival of Helicoverpa armigera. Pest Management Science, 2016, 72: 1359-1365 [39] Steinly BA, Berenbaum M. Histopathological effects of tannins on the midgut epithelium of Papilio polyxenes and Papolio glaucus. Entomologia Experimentalis et Applicata, 1985, 39: 3-9 [40] Barbehenn R, Weir Q, Salminen J. Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition. Journal of Chemical Ecology, 2008, 34: 748-756 [41] Golawska S, Lukasik I, Golawski A, et al. Alfalfa (Medicago sativa L.) apigenin glycosides and their effect on the pea aphid (Acyrthosiphon pisum). Polish Journal of Environmental Studies, 2010, 19: 913-919 [42] Treutter D. Significance of flavonoids in plant resistance: A review. Environmental Chemistry Letters, 2006, 4: 147-157 [43] Mithofer A, Boland W. Plant defense against herbivores: Chemical aspects. Annual Review of Plant Biology, 2012, 63: 431-450 [44] Steppuhn A, Gase K, Krock B, et al. Nicotine's defensive function in nature. PLoS Biology, 2004, 2(10): e382 [45] Bown AW, Macgregor KB, Shelp BJ. Gamma-aminobutyrate: Defense against invertebrate pests? Trends in Plant Science, 2006, 11: 424-427 [46] Bones AM, Rossiter JT. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiologia Plantarum, 1996, 97: 194-208 [47] Schlaeppi K, Bodenhausen N, Buchala A, et al. The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. The Plant Journal, 2008, 55: 774-786 [48] Alamgir KM, Hojo Y, Christeller JT, et al. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory. Plant, Cell & Environment, 2016, 39: 453-466 [49] Kaur H, Heinzel N, Schoettner M, et al. R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiology, 2010, 152: 1731-1747 [50] Bowles DJ. Defense-related proteins in higher-plants. Annual Review of Biochemistry, 1990, 59: 873-907 [51] Tanpure RS, Barbole RS, Dawkar VV, et al. Improved tolerance against Helicoverpa armigera in transgenic tomato over-expressing multi-domain proteinase inhibitor gene from Capsicum annuum. Physiology and Molecular Biology of Plants, 2017, 23: 597-604 [52] Chen H, Wilkerson CG, Kuchar JA, et al. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 19237-19242 [53] Kang J, Wang L, Giri A, et al. Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. The Plant Cell, 2006, 18: 3303-3320 [54] Chen MS, Wu JX, Zhang GH. Inducible direct plant defense against insect herbivores: A review. Insect Science, 2008, 15: 101-114 [55] Bhonwong A, Stout MJ, Attajarusit J, et al. Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). Journal of Chemical Ecology, 2009, 35: 28-38 [56] Matsui K, Kurishita S, Hisamitsu A, et al. A lipid-hydrolysing activity involved in hexenal formation. Biochemical Society Transactions, 2000, 28: 857-860 [57] Engelberth J, Engelberth M. The costs of green leaf vola-tile-induced defense priming: Temporal diversity in growth responses to mechanical wounding and insect herbivory. Plants, 2019, 8: 23 [58] Matsui K. Green leaf volatiles: Hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology, 2006, 9: 274-280 [59] 胡国文, 梁天锡, 刘光杰, 等. 抗白背飞虱水稻品种挥发性次生物质的提取、组分鉴定与生测. 中国水稻科学, 1994(4): 223-230 [Hu G-W, Liang T-X, Liu G-J, et al. The extraction, chemical analysis and bioassays of secondary volatiles from rice varieties susceptible and resistant to the white backed planthopper, Sogatella furcifera (Horvath) (Homoptera: Delphacidae). Chinese Journal of Rice Science, 1994(4): 223-230] [60] 周强, 徐涛, 张古忍, 等. 虫害诱导的水稻挥发物对褐飞虱的趋避作用. 昆虫学报, 2003, 46(6): 739-744 [Zhou Q, Xu T, Zhang G-Z, et al. Repellent effects of herbivore-induced rice volatiles on the brown planthopper, Nilaparvata lugens Stl. Acta Entomologica Sinica, 2003, 46(6): 739-744] [61] De Moraes CM, Mescher MC, Tumlinson JH. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature, 2001, 410: 577-580 [62] Reddy GVP, Guerrero A. Interactions of insect pheromones and plant semiochemicals. Trends in Plant Science, 2004, 9: 253-261 [63] Whitman DW, Eller FJ. Orientation of Microplitis croceipes (Hymenoptera, Braconidae) to green leaf volatiles: Dose-response curves. Journal of Chemical Ecology, 1992, 18: 1743-1753 [64] Shiojiri K, Ozawa R, Kugimiya S, et al. Herbivore-specific, density-dependent induction of plant volatiles: Honest or “cry wolf” signals? PLoS One, 2010, 5(8): e121618 [65] Shiojiri K, Kishimoto K, Ozawa R, et al. Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against both herbivores and pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 16672-16676 [66] Liu JL, Du HT, Ding X, et al. Mechanisms of callose deposition in rice regulated by exogenous abscisic acid and its involvement in rice resistance to Nilaparvata lugens Stål (Hemiptera: Delphacidae). Pest Management Science, 2017, 73: 2559-2568 [67] Hao PY, Liu CX, Wang YY, et al. Herbivore-induced callose deposition on the sieve plates of rice: An important mechanism for host resistance. Plant Physiology, 2008, 146: 1810-1820 [68] Zhou YD, Sun LT, Wang S, et al. A key ABA hydrolase gene, OsABA8ox3 is involved in rice resistance to Nilaparvata lugens by affecting callose deposition. Journal of Asia-Pacific Entomology, 2019, 22: 625-631 [69] Ahmad S, Veyrat N, Gordon-Weeks R, et al. Benzo-xazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiology, 2011, 157: 317-327 [70] Mukanganyama S, Figueroa CC, Hasler JA, et al. Effects of DIMBOA on detoxification enzymes of the aphid Rhopalosiphum padi (Homoptera: Aphididae). Journal of Insect Physiology, 2003, 49: 223-229 [71] Houseman JG, Campos F, Thie N, et al. Effect of the maize-derived compounds DIMBOA and MBOA on growth and digestive processes of european corn-borer (Lepidoptera, Pyralidae). Journal of Economic Entomology, 1992, 85: 669-674 [72] Tzin V, Lindsay PL, Christensen SA, et al. Genetic mapping shows intraspecific variation and transgressive segregation for caterpillar-induced aphid resistance in maize. Molecular Ecology, 2015, 24: 5739-5750 [73] Eichenseer H, Mathews MC, Powell JS, et al. Survey of a salivary effector in caterpillars: Glucose oxidase variation and correlation with host range. Journal of Chemical Ecology, 2010, 36: 885-897 [74] Wu S, Peiffer M, Luthe DS, et al. ATP hydrolyzing salivary enzymes of caterpillars suppress plant defenses. PLoS One, 2012, 7(7): e41947 [75] Schmelz EA, Huffaker A, Carroll MJ, et al. An amino acid substitution inhibits specialist herbivore production of an antagonist effector and recovers insect-induced plant defenses. Plant Physiology, 2012, 160: 1468-1478 [76] Will T, Tjallingii WF, Thonnessen A, et al. Molecular sabotage of plant defense by aphid saliva. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 10536-10541 [77] Naessens E, Dubreuil G, Giordanengo P, et al. A secreted MIF cytokine enables aphid feeding and represses plant immune responses. Current Biology, 2015, 25: 1898-1903 [78] Chung SH, Rosa C, Scully ED, et al. Herbivore exploits orally secreted bacteria to suppress plant defenses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 15728-15733 [79] Ray S, Alves PCMS, Ahmad I, et al. Turnabout is fair play: Herbivory-induced plant chitinases excreted in fall armyworm frass suppress herbivore defenses in maize. Plant Physiology, 2016, 171: 694-706 [80] Becerra JX. Synchronous coadaptation in an ancient case of herbivory. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 12804-12807 [81] Kumar P, Pandit SS, Steppuhn A, et al. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46's role in a nicotine-mediated antipredator herbivore defense. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 1245-1252 [82] Dunse KM, Kaas Q, Guarino RF, et al. Molecular basis for the resistance of an insect chymotrypsin to a potato type II proteinase inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 15016-15021 [83] Dobler S, Dalla S, Wagschal V, et al. Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na, K-ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 13040-13045 [84] Wybouw N, Dermauw W, Tirry L, et al. A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. eLife, 2014, 3: e2365 [85] Li X, Baudry J, Berenbaum MR, et al. Structural and functional divergence of insect CYP6B proteins: From specialist to generalist cytochrome P450. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 2939-2944 |
[1] | 蒋皓天, 何恒果, 胥晓, 董廷发. 不同性别邻体和土壤灭菌对青杨幼苗生物量的影响 [J]. 应用生态学报, 2021, 32(1): 66-72. |
[2] | 郑世群, 杨皖乔, 方镇福, 郑柠, 刘金福, 林凯琴, 肖丽芳, 李霖. 极小种群植物白果蒲桃种群现状与保护评价 [J]. 应用生态学报, 2021, 32(1): 103-112. |
[3] | 张小琴, 张媛铃, 李炳言, 冯雅楠, 李萍, 张东升, 王利伟, 郝兴宇. CO2浓度升高对大豆干旱胁迫的缓解效应 [J]. 应用生态学报, 2021, 32(1): 182-190. |
[4] | 张晨, 简敏菲, 陈宇蒙, 陈晴晴, 何旭芬, 丛明旸, 阳文静. 聚苯乙烯微塑料对黑藻生长及生理生化特征的影响 [J]. 应用生态学报, 2021, 32(1): 317-325. |
[5] | 胡杨, 马克明. 城市道路绿地对局地空气污染扩散的影响研究进展 [J]. 应用生态学报, 2021, 32(1): 349-357. |
[6] | 李龙, 唐常源, 曹英杰. 亚热带地区常绿阔叶林SPAC系统水分的氢氧稳定同位素特征 [J]. 应用生态学报, 2020, 31(9): 2875-2884. |
[7] | 邓月强, 曹雪莹, 谭长银, 孙丽娟, 彭曦, 柏佳, 黄硕霈. 巨大芽孢杆菌对伴矿景天修复镉污染农田土壤的强化作用 [J]. 应用生态学报, 2020, 31(9): 3111-3118. |
[8] | 王欣玉, 刘勇波. 转基因植物与近缘种之间基因流的研究进展 [J]. 应用生态学报, 2020, 31(9): 3207-3215. |
[9] | 陈腊, 米国华, 李可可, 邵慧, 胡栋, 杨俊鹏, 隋新华, 陈文新. 多功能植物根际促生菌对东北黑土区玉米的促生效果 [J]. 应用生态学报, 2020, 31(8): 2759-2766. |
[10] | 李金金, 张健, 张阿娟, 吴娇, 张丹桔. 不同密度巨桉人工林林下植物多样性及根际土壤化感物质 [J]. 应用生态学报, 2020, 31(7): 2175-2184. |
[11] | 曹晶晶, 彭琼, 杨霞, 杨倩, 柏连阳, 李永丰, 张自常, 谷涛. 外源茉莉酸甲酯诱导抗性与敏感稗草对二氯喹啉酸抗性的差异及机理 [J]. 应用生态学报, 2020, 31(7): 2293-2298. |
[12] | 张凡, 徐常青, 陈君, 马妹, 陆鹏飞, 刘赛, 李建领, 乔海莉. 枸杞红瘿蚊对寄主植物挥发物的电生理和行为反应 [J]. 应用生态学报, 2020, 31(7): 2299-2306. |
[13] | 杨孟可, 李建领, 刘赛, 乔海莉, 郭昆, 徐荣, 陈君, 徐常青. 宁夏枸杞对枸杞瘿螨为害的内源激素响应及外源水杨酸对枸杞瘿螨的影响 [J]. 应用生态学报, 2020, 31(7): 2307-2313. |
[14] | 苏鹏燕, 张明军, 王圣杰, 邱雪, 王家鑫, 杜勤勤, 郭蓉, 车存伟. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源 [J]. 应用生态学报, 2020, 31(6): 1835-1843. |
[15] | 王国华, 郭文婷, 缑倩倩. 钠盐胁迫对河西走廊荒漠绿洲过渡带典型一年生草本植物种子萌发的影响 [J]. 应用生态学报, 2020, 31(6): 1941-1947. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||