应用生态学报 ›› 2024, Vol. 35 ›› Issue (1): 111-123.doi: 10.13287/j.1001-9332.202401.011
杨阳1,2,3, 王宝荣1, 窦艳星1, 薛志婧4, 孙慧2,3, 王云强2,3, 梁超5, 安韶山1*
收稿日期:
2023-05-24
接受日期:
2023-11-21
出版日期:
2024-01-18
发布日期:
2024-03-21
通讯作者:
* E-mail: shan@ms.iswc.ac.cn
作者简介:
杨 阳, 男, 1988年生, 博士, 研究员。主要从事土壤生态学与全球变化生态学研究。E-mail: yangyang@ieecas.cn
基金资助:
YANG Yang1,2,3, WANG Baorong1, DOU Yanxing1, XUE Zhijing4, SUN Hui2,3, WANG Yunqiang2,3, LIANG Chao5, AN Shaoshan1*
Received:
2023-05-24
Accepted:
2023-11-21
Online:
2024-01-18
Published:
2024-03-21
摘要: 土壤有机碳库是陆地生态系统碳汇的重要组成部分,探明土壤有机碳的转化与稳定机制是深入理解陆地生态系统碳汇功能及应对气候变化的关键。近年提出的“土壤微生物碳泵”理论,即:植物残体是土壤有机碳的初始来源,微生物同化产物也是土壤稳定有机碳库的重要贡献者,对土壤有机碳的固存机制提出了新的见解。由于植物残体分解过程的复杂性、多变性以及参与分解过程的微生物种群的高异质性,植物残体和微生物残体向土壤有机碳的转化和稳定机理尚不十分明确。本文阐述了植物残体和微生物残体定量的表征方法以及它们在土壤中的稳定机制,探讨了植物和微生物源残体碳对土壤有机碳的贡献及其在土壤有机碳积累过程中的主要影响因素,最后对该研究领域未来的发展方向和研究重点进行展望,以期为陆地生态系统土壤固碳研究提供科学支撑。
杨阳, 王宝荣, 窦艳星, 薛志婧, 孙慧, 王云强, 梁超, 安韶山. 植物源和微生物源土壤有机碳转化与稳定研究进展[J]. 应用生态学报, 2024, 35(1): 111-123.
YANG Yang, WANG Baorong, DOU Yanxing, XUE Zhijing, SUN Hui, WANG Yunqiang, LIANG Chao, AN Shaoshan. Advances in the research of transformation and stabilization of soil organic carbon from plant and microbe[J]. Chinese Journal of Applied Ecology, 2024, 35(1): 111-123.
[1] Kononova MM. Soil organic matter: Its nature, its role in soil formation and in soil fertility. Annales Agronomiques, 1967, 18: 92 [2] Steelink C. What is humic acid? A perspective of the past forty years. 3rd Humic Substances Seminar, Boston, 1999: 1-8 [3] Campbell CA, Paul EA, Rennie DA, et al. Applicability of the carbon-dating method of analysis to soil humus studies. Soil Science, 1967, 104: 217-224 [4] Dou S, Shan J, Song XY, et al. Are humic substances soil microbial residues or unique synthesized compounds? A perspective on their distinctiveness. Pedosphere, 2020, 30: 159-167 [5] Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature, 2015, 528: 60-68 [6] Kelleher BP, Simpson AJ. Humic substances in soils: Are they really chemically distinct? Environmental Science & Technology, 2006, 40: 4605-4611 [7] Myneni SCB, Brown JT, Martinez GA, et al. Imaging of humic substance macromolecular structures in water and soils. Science, 1999, 286: 1335-1337 [8] Oglesby RT, Christman RF, Driver CH. The biotransformation of lignin to humus: Facts and postulates. Advances in Applied Microbiology, 1968, 9: 171-184 [9] Cotrufo MF, Soong JL, Horton AJ, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 2015, 8: 776-779 [10] Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2: 17105 [11] Camenzind T, Mason-Jones K, Mansour I, et al. Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nature Geoscience, 2023, 16: 115-122 [12] Kallenbach CM, Frey SD, Grandy AS. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 2016, 7: 13630 [13] Miltner A, Bombach P, Schmidt-Brücken B, et al. SOM genesis: Microbial biomass as a significant source. Biogeochemistry, 2012, 111: 41-55 [14] Ma T, Zhu SS, Wang ZH, et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 2018, 9: 3480 [15] Yuan Y, Li Y, Mou ZJ, et al. Phosphorus addition decreases microbial residual contribution to soil organic carbon pool in a tropical coastal forest. Global Change Biology, 2021, 27: 454-466 [16] Fan XL, Gao DC, Zhao CH, et al. Improved model simu-lation of soil carbon cycling by representing the micro-bially derived organic carbon pool. ISME Journal, 2021, 15: 2248-2263 [17] Wang C, Qu LR, Yang LM, et al. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology, 2021, 27: 2039-2048 [18] Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25: 3578-3590 [19] Yang Y, Dou YX, Wang BR, et al. Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence. Soil Biology and Biochemistry, 2022, 170: 108688 [20] He M, Fang K, Chen LY, et al. Depth-dependent dri-vers of soil microbial necromass carbon across Tibetan alpine grasslands. Global Change Biology, 2022, 28: 936-949 [21] Li TT, Yuan Y, Mou ZJ, et al. Faster accumulation and greater contribution of glomalin to the soil organic carbon pool than amino sugars do under tropical coastal forest restoration. Global Change Biology, 2023, 29: 533-546 [22] Schmidt MW, Torn MS, Abiven S, et al. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478: 49-56 [23] Gleixner G, Czimczik CI, Kramer C, et al. Plant compounds and their turnover and stabilization as soil orga-nic matter// Schulze ED, Heimann M, Harrison S, eds. Global Biogeochemical Cycles in the Climate System. San Diego: Academic Press, 2001: 201-215 [24] Derenne S, Largeau C. A review of some important families of refractory macromolecules: Composition, origin, and fate in soils and sediments. Soil Science, 2001, 166: 833-847 [25] Kögel-Knabner I, Guggenberger G, Kleber M, et al. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 2008, 171: 61-82 [26] Sollins P, Kramer MG, Swanston C, et al. Sequential density fractionation across soils of contrasting mineralogy: Evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry, 2009, 96: 209-231 [27] Liang C, Balser TC. Microbial production of recalcitrant organic matter in global soils: Implications for productivity and climate policy. Nature Reviews Microbiology, 2011, 9: doi: 10.1038/nrmicro2386-c1 [28] Weverka J, Runte GC, Porzig EL, et al. Exploring plant and soil microbial communities as indicators of soil organic carbon in a California rangeland. Soil Biology and Biochemistry, 2023, 178: 108952 [29] Whalen ED, Grandy AS, Sokol NW, et al. Clarifying the evidence for microbial- and plant-derived soil orga-nic matter, and the path toward a more quantitative understanding. Global Change Biology, 2022, 28: 7167-7185 [30] Kögel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 2002, 34: 139-162 [31] Gunina A, Kuzyakov Y. Sugars in soil and sweets for microorganisms: Review of origin, content, composition and fate. Soil Biology and Biochemistry, 2015, 90: 87-100 [32] Wagner GH. Soil Components: Vol. 1: Organic Components. Berlin: Springer-Verlag, 1975: 213-261 [33] Kuzyakov Y, Domanski G. Carbon input by plants into the soil: Review. Journal of Plant Nutrition and Soil Science, 2000, 163: 421-431 [34] Rumpel C, Dignac MF. Gas chromatographic analysis of monosaccharides in a forest soil profile: Analysis by gas chromatography after trifluoroacetic acid hydrolysis and reduction-acetylation. Soil Biology and Biochemistry, 2006, 38: 1478-1481 [35] Amelung W. Methods using amino sugars as markers for microbial residues in soil// Lal R. Assessment Methods for Soil Carbon. Boca Raton, FL, USA: Lewis Publishers, 2001: 233-270 [36] Jia SX, Liu XF, Lin WS, et al. Tree roots exert greater influence on soil microbial necromass carbon than above-ground litter in subtropical natural and plantation forests. Soil Biology and Biochemistry, 2022, 173: 108811 [37] Bahri H, Dignac MF, Rumpel C, et al. Lignin turnover kinetics in an agricultural soil is monomer specific. Soil Biology and Biochemistry, 2006, 38: 1977-1988 [38] 冯晓娟, 王依云, 刘婷, 等. 生物标志物及其在生态系统研究中的应用. 植物生态学报, 2020, 44(4): 384-394 [39] Jia YF, Zhai GQ, Zhu SS, et al. Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest. Soil Biology and Biochemistry, 2021, 161: 108375 [40] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3): 298-310 [41] 刘程竹, 贾娟, 戴国华, 等. 中性糖在土壤中的来源与分布特征. 植物生态学报, 2019, 43(4): 284-295 [42] Yang Y, Dou YX, Wang BR, et al. Deciphering factors driving soil microbial life-history strategies in restored grasslands. iMeta, 2022, 2: e66 [43] Feng XJ, Wang SM. Plant influences on soil microbial carbon pump efficiency. Global Change Biology, 2023, 29: 3854-3856 [44] Tao F, Huang YY, Hungate BA, et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature, 2023, 618: 981-985 [45] Liang C, Kästner M, Joergensen RG. Microbial necromass on the rise: The growing focus on its role in soil organic matter development. Soil Biology and Biochemistry, 2020, 150: 108006 [46] Feng XJ, Simpson MJ. Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in orga-nic matter quality. Soil Biology and Biochemistry, 2009, 41: 804-812 [47] Feng XJ, Simpson MJ. The distribution and degradation of biomarkers in Alberta grassland soil profiles. Organic Geochemistry, 2007, 38: 1558-1570 [48] Brinton WF. Phospholipid fatty acid (PLFA) analysis: A robust indicator for soil health? Agricultural research and Technology, 2020, 24: 556281 [49] Joergensen RG. Phospholipid fatty acids in soil: Drawbacks and future prospects. Biology and Fertility of Soils, 2022, 58: 1-6 [50] Joergensen RG. Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 2018, 54: 559-568 [51] Zhang X, Amelung W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 1996, 28: 1201-1206 [52] Hao Z, Zhao Y, Wang X, et al. Thresholds in aridity and soil carbon-to-nitrogen ratio govern the accumulation of soil microbial residues. Communications Earth & Environment, 2021, 2: 236 [53] Shao S, Zhao Y, Zhang W, et al. Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession. Soil Biology and Biochemistry, 2017, 114: 114-120 [54] Canarini A, Schmidt H, Fuchslueger L, et al. Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nature Communications, 2021, 12: 5308 [55] Zhu XF, Jackson RD, DeLucia EH, et al. The soil microbial carbon pump: From conceptual insights to empirical assessments. Global Change Biology, 2020, 26: 6032-6039 [56] 渠晨晨, 任稳燕, 李秀秀, 等. 重新认识土壤有机质. 科学通报, 2022, 67(10): 913-923 [57] 汪景宽, 徐英德, 丁凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展. 土壤学报, 2019, 56(3): 528-540 [58] Hoehler TM, Jrgensen BB. Microbial life under extreme energy limitation. Nature Reviews Microbiology, 2013, 11: 83-94 [59] 梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论. 中国科学: 地球科学, 2021, 51(5): 680-695 [60] Zhu XM, Zhang ZL, Wang QT, et al. More soil organic carbon is sequestered through the mycelium pathway than through the root pathway under nitrogen enrichment in an alpine forest. Global Change Biology, 2022, 28: 4947-4961 [61] Simpson AJ, Simpson MJ, Smith E, et al. Microbially derived inputs to soil organic matter: Are current estimates too low? Environmental Science & Technology, 2007, 41: 8070-8076 [62] Wang BR, An SS, Liang C, et al. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology and Biochemistry, 2021, 162: 108422 [63] Shao PS, Liang C, Lynch L, et al. Reforestation acce-lerates soil organic carbon accumulation: Evidence from microbial biomarkers. Soil Biology and Biochemistry, 2019, 131: 182-190 [64] 窦森, 王帅. 不同微生物对形成不同腐殖质组分的差异性研究进展. 吉林农业大学学报, 2011, 33(2): 119-125 [65] Dai GH, Zhu SS, Cai Y, et al. Plant-derived lipids play a crucial role in forest soil carbon accumulation. Soil Biology and Biochemistry, 2022, 168: 108645 [66] Sokol NW, Bradford MA. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience, 2019, 12: 46-53 [67] Xiao KQ, Zhao Y, Liang C, et al. Introducing the soil mineral carbon pump. Nature Reviews Earth and Environment, 2023, 4: 135-136 [68] Hemingway JD, Rothman DH, Grant KE, et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature, 2019, 570: 228-231 [69] He HB, Xie HT, Zhang XD. A novel GC/MS technique to assess 15N and 13C incorporation into soil amino sugars. Soil Biology and Biochemistry, 2006, 38: 1083-1091 [70] 李昌明, 王晓玥, 孙波. 基于固态13C核磁共振波谱研究植物残体分解和转化机制的进展. 土壤, 2017, 49(4): 658-664 [71] 李娜, 盛明, 尤孟阳, 等. 应用13C核磁共振技术研究土壤有机质化学结构进展. 土壤学报, 2019, 56(4): 796-812 [72] Angst G, Mueller KE, Nierop KG, et al. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry, 2021, 156: 108189 [73] Zheng TT, Miltner A, Liang C, et al. Turnover of bacterial biomass to soil organic matter via fungal biomass and its metabolic implications. Soil Biology and Biochemistry, 2023, 180: 108995 [74] 张维理, Kolbe H, 张认连. 土壤有机碳作用及转化机制研究进展. 中国农业科学, 2020, 53(2): 317-331 [75] 周正虎, 刘琳, 侯磊. 土壤有机碳的稳定和形成: 机制和模型. 北京林业大学学报, 2022, 44(10): 11-22 [76] Domeignoz-Horta LA, Shinfuku M, Junier P, et al. Direct evidence for the role of microbial community composition in the formation of soil organic matter composition and persistence. ISME Communications, 2021, 1: 64 [77] Bonner MT, Franklin O, Hasegawa S, et al. Those who can don’t want to, and those who want to can’t: An eco-evolutionary mechanism of soil carbon persistence. Soil Biology and Biochemistry, 2022, 174: 108813 [78] Zhang ZY, Li BC, Wang H, et al. The fungal feeding channel of the soil micro-food web contributes to the transformation of exogenous C into soil C: A 13C labelling microcosm experiment. Land Degradation and Development, 2023, 34: 466-477 [79] Wang C, Wang X, Pei GT, et al. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biology and Biochemistry, 2020, 141: 107687 [80] 张彬, 陈奇, 丁雪丽, 等. 微生物残体在土壤中的积累转化过程与稳定机理研究进展. 土壤学报, 2021, 59(6): 1479-1491 [81] Liu S, Six J, Zhang HX, et al. Integrated aggregate turnover and soil organic carbon sequestration using rare earth oxides and 13C isotope as dual tracers. Geoderma, 2023, 430: 116313 [82] Zhang WJ, Munkholm LJ, Liu X, et al. Soil aggregate microstructure and microbial community structure mediate soil organic carbon accumulation: Evidence from one-year field experiment. Geoderma, 2023, 430: 116324 [83] Smucker AJ, Wang W, Kravchenko AN, et al. Forms and functions of meso and micro-niches of carbon within soil aggregates. Journal of Nematology, 2010, 42: 84 [84] 张维俊, 李双异, 徐英德, 等. 土壤孔隙结构与土壤微环境和有机碳周转关系的研究进展. 水土保持学报, 2019, 33(4): 1-9 [85] An SS, Darboux F, Cheng M. Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau (China). Geoderma, 2013, 209: 75-85 [86] An SS, Mentler A, Mayer H, et al. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena, 2010, 81: 226-233 [87] Ding XL, Liang C, Zhang B, et al. Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil. Soil Biology and Biochemistry, 2015, 84: 137-146 [88] Bhattacharyya SS, Ros GH, Furtak K, et al. Soil carbon sequestration: An interplay between soil microbial community and soil organic matter dynamics. Science of the Total Environment, 2022, 815: 152928 [89] Cotrufo MF, Wallenstein MD, Boot CM, et al. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 2013, 19: 988-995 [90] Buckeridge KM, Creamer C, Whitaker J. Deconstructing the microbial necromass continuum to inform soil carbon sequestration. Functional Ecology, 2022, 36: 1396-1410 [91] Kleber M, Bourg IC, Coward EK, et al. Dynamic interactions at the mineral-organic matter interface. Nature Reviews Earth & Environment, 2021, 2: 402-421 [92] Shao PS, Lynch L, Xie HT, et al. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biology and Biochemistry, 2021, 153: 108112 [93] Hu PL , Zhang W, Kuzyakov Y, et al. Linking bacterial life strategies with soil organic matter accrual by karst vegetation restoration. Soil Biology and Biochemistry, 2023, 177: 108925 [94] Wang XY, Liang C, Mao JD, et al. Microbial keystone taxa drive succession of plant residue chemistry. ISME Journal, 2023, 17: 748-757 [95] Joly FX, Coq S, Coulis M, et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Communications Biology, 2020, 3: 660 [96] McLean MA, Migge-Kleian S, Parkinson D. Earthworm invasions of ecosystems devoid of earthworms: Effects on soil microbes. Biological Invasions, 2006, 8: 1257-1273 [97] Kohl L, Myers-Pigg A, Edwards KA, et al. Microbial inputs at the litter layer translate climate into altered organic matter properties. Global Change Biology, 2021, 27: 435-453 [98] Kou XC, Morriën E, Tian YJ, et al. Exogenous carbon turnover within the soil food web strengthens soil carbon sequestration through microbial necromass accumulation. Global Change Biology, 2023, 29: 4069-4080 [99] Dungait JA, Hopkins DW, Gregory AS, et al. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 2012, 18: 1781-1796 [100] 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望. 土壤学报, 2023, 60(3): 627-643 [101] Chen GP, Ma SH, Tian D, et al. Patterns and determinants of soil microbial residues from tropical to boreal forests. Soil Biology and Biochemistry, 2020, 151: 108059 [102] Yang LM, Lyu MK, Li XJ, et al. Decline in the contribution of microbial residues to soil organic carbon along a subtropical elevation gradient. Science of the Total Environment, 2020, 749: 141583 [103] Wen SH, Chen JY, Yang ZM, et al. Climatic seaso-nality challenges the stability of microbial-driven deep soil carbon accumulation across China. Global Change Biology, 2023, 29: 4430-4439 [104] Jia J, Feng XJ, He JS, et al. Comparing microbial carbon sequestration and priming in the subsoil versus topsoil of a Qinghai-Tibetan alpine grassland. Soil Biology and Biochemistry, 2017, 104: 141-151 [105] Cao YF, Ding JZ, Li J, et al. Necromass-derived soil organic carbon and its drivers at the global scale. Soil Biology and Biochemistry, 2023, 181: 109025 [106] Ren CJ, Wang JY, Bastida F, et al. Microbial traits determine soil C emission in response to fresh carbon inputs in forests across biomes. Global Change Biology, 2022, 28: 1516-1528 [107] Wang X, Wang C, Cotrufo MF, et al. Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover. Global Change Biology, 2020, 26: 5277-5289 [108] Zhou RR, Liu Y, Dungait JAJ, et al. Microbial necromass in cropland soils: A global meta: Analysis of mana-gement effects. Global Change Biology, 2023, 29: 1998-2014 [109] Zeng XM, Feng J, Yu DL, et al. Local temperature increases reduce soil microbial residues and carbon stocks. Global Change Biology, 2022, 28: 6433-6445 [110] Hu JX, Du ML, Chen J, et al. Microbial necromass under global change and implications for soil organic matter. Global Change Biology, 2023, 29: 3503-3515 [111] Zhao XC, Tian P, Liu SG, et al. Mean annual tempe-rature and carbon availability respectively controlled the contributions of bacterial and fungal residues to organic carbon accumulation in topsoil across China’s forests. Global Ecology and Biogeography, 2023, 32: 120-131 [112] Ma SH, Chen GP, Du EZ, et al. Effects of nitrogen addition on microbial residues and their contribution to soil organic carbon in China’s forests from tropical to boreal zone. Environmental Pollution, 2021, 268: 115941 [113] Zhang XY, Jia J, Chen LT, et al. Aridity and NPP constrain contribution of microbial necromass to soil organic carbon in the Qinghai-Tibet alpine grasslands. Soil Biology and Biochemistry, 2021, 156: 108213 [114] Donhauser J, Qi WH, Bergk-Pinto B, et al. High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high-mountain soils. Global Change Biology, 2021, 27: 1365-1386 [115] Feng XJ, Simpson MJ. Molecular-level methods for monitoring soil organic matter responses to global climate change. Journal of Environmental Monitoring, 2011, 13: 1246-1254 [116] Ding XL, Chen SY, Zhang B, et al. Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil Biology and Biochemistry, 2019, 135: 13-19 [117] Lugato E, Lavallee JM, Haddix ML, et al. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nature Geoscience, 2021, 14: 295-300 [118] Musat N, Musat F, Weber PK, et al. Tracking microbial interactions with NanoSIMS. Current Opinion in Biotechnology, 2016, 41: 114-121 [119] 李玉锋, 赵甲亭, 李云云, 等. 同步辐射技术研究汞的环境健康效应与生态毒理. 中国科学: 化学, 2015, 45(6): 597-613 [120] 殷国良, 孙文浩, 庞效云, 等. 冷冻电镜技术在分子植物学研究中的应用. 生物技术通报, 2022, 38(1): 15-32 [121] 田恬, 黄艺顺, 林冰倩, 等. 纸芯片微流控技术的发展及应用. 分析测试学报, 2015, 34(3): 257-267 [122] Odum EP. Energy flow in ecosystems: A historical review. American Zoologist, 1968, 8: 11-18 [123] Fontaine S, Barot S, Barré P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 2007, 450: 277-280 [124] Henneron L, Balesdent J, Alvarez G, et al. Bioenergetic control of soil carbon dynamics across depth. Nature Communications, 2022, 13: 7676 [125] Gunina A, Kuzyakov Y. From energy to (soil organic) matter. Global Change Biology, 2022, 28: 2169-2182 [126] 胡世文, 刘同旭, 李芳柏, 等. 土壤铁矿物的生物-非生物转化过程及其界面重金属反应机制的研究进展. 土壤学报, 2022, 59(1): 54-65 |
[1] | 洪宣生, 王宗星, 徐清福, 邱勇斌, 成向荣. 杉木+闽楠复层林土壤氮磷组分及微生物性状随林龄变化特征 [J]. 应用生态学报, 2024, 35(3): 622-630. |
[2] | 张羽涵, 李瑶, 周玥, 陈圆佳, 安韶山. 宁南山区不同恢复年限柠条林土壤养分及有机碳组分变化特征 [J]. 应用生态学报, 2024, 35(3): 639-647. |
[3] | 杨雪, 曹霞, 白冰, 袁艳娜, 张宁, 谢洋, 武春成. 根施生物炭对设施连作土壤氮素转化及黄瓜幼苗根系氮代谢的影响 [J]. 应用生态学报, 2024, 35(3): 713-720. |
[4] | 李佳玉, 施秀珍, 李帅军, 王振宇, 王建青, 邹秉章, 王思荣, 黄志群. 杉木人工林和天然次生林林龄对土壤酶活性的影响 [J]. 应用生态学报, 2024, 35(2): 339-346. |
[5] | 朱雪峰, 孔维栋, 黄懿梅, 肖可青, 罗煜, 安韶山, 梁超. 土壤微生物碳泵概念体系2.0 [J]. 应用生态学报, 2024, 35(1): 102-110. |
[6] | 申继凯, 黄懿梅, 黄倩, 徐凤璟. 黄土高原不同植被类型土壤微生物残体碳的积累及其对有机碳的贡献 [J]. 应用生态学报, 2024, 35(1): 124-132. |
[7] | 贾娟, 李星奇, 冯晓娟. 排水对我国两种典型湿地土壤有机碳微生物转化过程的影响 [J]. 应用生态学报, 2024, 35(1): 133-140. |
[8] | 覃振凯, 刘润红, 何鹏, 王聪, 聂彦霞, 申卫军. 马尾松纯林混交改造对土壤微生物残体碳和有机碳组分的影响 [J]. 应用生态学报, 2024, 35(1): 141-152. |
[9] | 胡建文, 刘常富, 勾蒙蒙, 陈会玲, 雷蕾, 肖文发, 朱粟锋, 斛如媛. 林龄对马尾松人工林微生物残体碳积累的影响机制 [J]. 应用生态学报, 2024, 35(1): 153-160. |
[10] | 张羽涵, 李瑶, 周玥, 刘春晖, 安韶山. 宁南山区不同恢复年限柠条林地土壤微生物残体碳沿剖面分布特征 [J]. 应用生态学报, 2024, 35(1): 161-168. |
[11] | 井艳丽, 李旭华, 张袁, 张馨月, 刘美, 冯秋红. 间伐对川西亚高山云杉人工林土壤微生物残体碳积累的影响 [J]. 应用生态学报, 2024, 35(1): 169-176. |
[12] | 王翠娟, 刘小飞, 杨柳明, 贾淑娴. 中亚热带米槠人工林土壤微生物残体碳对凋落物和根系碳输入的响应 [J]. 应用生态学报, 2024, 35(1): 177-185. |
[13] | 薛志婧, 屈婷婷, 刘春晖, 刘小槺, 王蕊, 王宁, 周正朝, 董治宝. 培养条件下枯落物分解过程中微生物残体对土壤有机碳形成的贡献 [J]. 应用生态学报, 2023, 34(7): 1845-1852. |
[14] | 庞丹波, 吴梦瑶, 赵娅茹, 杨娟, 董立国, 吴旭东, 陈林, 李学斌, 倪细炉, 李静尧, 梁咏亮. 贺兰山东坡不同海拔土壤微生物群落特征及其影响因素 [J]. 应用生态学报, 2023, 34(7): 1957-1967. |
[15] | 张晓伟, 杨显贺, 车豪杰, 秦竞, 毕焕改, 艾希珍. 腐熟玉米秸秆对设施土壤环境及黄瓜产量和品质的影响 [J]. 应用生态学报, 2023, 34(5): 1290-1296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||