欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2021, Vol. 32 ›› Issue (6): 1989-1997.doi: 10.13287/j.1001-9332.202106.010

• 稳定同位素生态学专栏 • 上一篇    下一篇

土壤水分对土壤产生气态氮的厌氧微生物过程的影响

李靳1,2, 康荣华1,3*, 于浩明1,2, 王莹莹1,2, 姚萌1,2, 方运霆1,3   

  1. 1中国科学院沈阳应用生态研究所森林生态与管理重点实验室, 沈阳 110016;
    2中国科学院大学, 北京 100049;
    3辽宁省稳定同位素技术重点实验室, 沈阳 110016
  • 收稿日期:2021-03-04 接受日期:2021-04-16 发布日期:2021-12-15
  • 通讯作者: * E-mail: kangrh@iae.ac.cn
  • 作者简介:李 靳, 女, 1997年生, 硕士研究生。主要从事森林生态系统土壤气态氮释放研究。E-mail: li_jinxx@163.com
  • 基金资助:
    国家自然科学基金项目(41807320)资助

Effects of soil moisture on microbial processes of soil nitrogen gases production under anaerobic conditions

LI Jin1,2, KANG Rong-hua1,3*, YU Hao-ming1,2, WANG Ying-ying1,2, YAO Meng1,2, FANG Yun-ting1,3   

  1. 1Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
    2University of Chinese Academy of Sciences, Beijing 100049, China;
    3Key Laboratory of Stable Isotope Techniques and Applications, Shenyang 110016, China
  • Received:2021-03-04 Accepted:2021-04-16 Published:2021-12-15
  • Contact: * E-mail: kangrh@iae.ac.cn
  • Supported by:
    National Natural Science Foundation of China (41807320).

摘要: 气态氮[一氧化氮(NO)、氧化亚氮(N2O)和氮气(N2)]的释放是土壤氮损失的一种重要途径。硝化和反硝化作用是土壤气态氮损失的主要微生物过程,但是异养硝化作用、共反硝化作用和厌氧氨氧化过程对土壤气态氮损失的贡献尚不清楚。本研究利用15N标记和配对法,结合硝化抑制剂双氰胺(DCD),通过土壤培养试验来量化厌氧条件下各种微生物过程对NO、N2O和N2产生的贡献。结果表明: 在厌氧条件下培养24 h后,土壤孔隙含水率为65%时,3种气体总的15N回收率最高,占加入15N总量的20.0%。反硝化过程对NO、N2O和N2产生的贡献率分别为49.9%~94.1%、29.0%~84.7%和58.2%~85.8%,是产生3种气体的主要过程。异养硝化过程也是产生NO和N2O的重要过程,特别是在土壤孔隙含水率很低时(10%)对两种气体产生的贡献率分别为50.1%和42.8%。,共反硝化过程对N2O产生的贡献率为10.6%~30.7%,共反硝化和厌氧氨氧化过程对N2产生的总贡献率为14.2%~41.8%,表明共反硝化过程在N2O和N2产生中的作用不可忽视。15N标记和配对法是区分气态氮损失的各种微生物过程的有效手段。

关键词: 15N标记法, 15N配对法, 一氧化氮, 氧化亚氮, 氮气, 反硝化过程, 异养硝化过程, 共反硝化过程, 土壤水分

Abstract: Gaseous nitrogen (N) emission [nitric oxide (NO), nitrous oxide (N2O), and nitrogen (N2)] is an important pathway of soil N loss. Nitrification and denitrification are the main processes of gaseous N production in soil. However, the contribution of heterotrophic nitrification, co-denitrification, and anammox to gaseous N production remains uncertain. In a laboratory soil incubation experiment, we used the 15N labelling and pairing technique, combining the nitrification inhibitor dicyandiamide (DCD), to quantify the contribution of different microbial processes to soil NO, N2O and N2 production under anaerobic conditions. The results showed that after 24 h anaerobic incubation, the highest total 15N recovery of three gases occurred at 65% water filled pore space (WFPS), accounting for 20.0% of total added 15N. Denitrification contributed 49.9%-94.1%, 29.0%-84.7%, and 58.2%-85.8% to the production of NO, N2O and N2 respectively, suggesting that denitrification was the predominant process of those three N gases emission. Heterotrophic nitrification was an important pathway of NO and N2O production, particularly at conditions with low soil water content (10% WFPS), with its contribution to those two N gases production being 50.1% and 42.8%, respectively. Co-denitrification contributed 10.6%-30.7% of N2O production. For N2 production, the total contribution of co-denitrification and anammox was 14.2%-41.8%. The role of co-denitrification can not be ignored for N2O and N2 production. Our results demonstrated that the 15N labelling and pairing technique is a promising tool to quantify the contribution of different microbial processes to gaseous N loss.

Key words: 15N labelling, 15N pairing technique, NO, N2O, N2, denitrification, heterotrophic nitrification, co-denitrification, soil moisture