[1] McColl-Gausden SC, Bennett LT, Clarke H, et al. The fuel-climate-fire conundrum: How will fire regimes change in temperate Eucalypt forests under climate change? Global Change Biology, 2022, 28: 5211-5226 [2] 孙龙, 刘祺, 胡同欣. 森林地表死可燃物含水率预测模型研究进展. 林业科学, 2021, 57(4): 142-152 [3] Awson JG, Duff TJ. Forest fuel bed ignitability under marginal fire weather conditions in Eucalyptus forests. International Journal of Wildland Fire, 2019, 28: 198-204 [4] Brown EP, Inbar A, Duff TJ, et al. The sensitivity of fuel moisture to forest structure effects on microclimate. Agricultural and Forest Meteorology, 2022, 316: 108857 [5] Nyman P, Baillie CC, Duff TJ, et al. Eco-hydrological controls on microclimate and surface fuel evaporation in complex terrain. Agricultural and Forest Meteorology, 2018, 252: 49-61 [6] Alves M, Batista AC, Soares RV, et al. Fuel moisture sampling and modeling in Pinus elliottii Engelm plantations based on weather conditions in Paraná-Brazil. iForest-Biogeosciences & Forestry, 2009, 2: 99-103 [7] Slijepcevic A, Anderson WR, Matthews S, et al. An analysis of the effect of aspect and vegetation type on fine fuel moisture content in Eucalypt forest. International Journal of Wildland Fire, 2018, 27: 190-202 [8] 李保中, 刘鑫源, 于淙, 等. 哈尔滨城市林业示范基地5种典型人工林地表死可燃物含水率的预测. 东北林业大学学报, 2022, 50(11): 65-71 [9] 张冉, 张兴龙, 胡海清, 等. 大兴安岭林区典型森林和草甸细小死可燃物含水率预测模型. 东北林业大学学报, 2021, 49(3): 74-80 [10] 伍威, 张运林, 满子源. 湿度码预测江西典型地表细小死可燃物含水率适用性分析. 中南林业科技大学学报, 2021, 41(10): 37-44 [11] 胡海清, 陆昕, 孙龙, 等. 大兴安岭典型林分地表死可燃物含水率动态变化及预测模型. 应用生态学报, 2016, 27(7): 2212-2224 [12] 詹航, 牛树奎, 王博. 北京地区8种树种枯死可燃物含水率预测模型及变化规律. 北京林业大学学报, 2020, 42(6): 80-90 [13] 金森, 周勇. 昆明典型地表死可燃物含水率预测模型的研究. 中南林业科技大学学报, 2014, 34(12): 7-15 [14] Fan C, He B. A physics-guided deep learning model for 10-h dead fuel moisture content estimation. Forests, 2021, 12: f12070933 [15] Masinda MM, Li F, Liu Q, et al. Prediction model of moisture content of dead fine fuel in forest plantations on Maoer Mountain, Northeast China. Journal of Forestry Research, 2021, 32: 2023-2035 [16] Lei WD, Yu Y, Li XH, et al. Estimating dead fine fuel moisture content of forest surface, based on wireless sensor network and back-propagation neural network. International Journal of Wildland Fire, 2022, 31: 369-378 [17] Greff K, Srivastava RK, Koutník J, et al. LSTM: A search space Odyssey. IEEE Transactions on Neural Networks & Learning Systems, 2016, 28: 2222-2232 [18] Dhaka VS, Meena SV, Rani G, et al. A survey of deep convolutional neural networks applied for prediction of plant leaf diseases. Sensors, 2021, 21: 4749 [19] Zhang Z, Tian J, Huang W, et al. A haze prediction method based on one-dimensional convolutional neural network. Atmosphere, 2021, 12: 1327 [20] 吴月圆, 舒立福, 王明玉, 等. 近年世界森林火灾综述. 温带林业研究, 2022, 5(4): 1-7 [21] 张恒, 候晓佳, 张秋良. 内蒙古大兴安岭典型林分地表死可燃物燃烧性. 福建农林大学学报:自然科学版, 2020, 49(4): 486-491 [22] 李艳芹, 胡海清. 帽儿山主要树种燃烧性分析与排序. 东北林业大学学报, 2010, 38(5): 34-36 [23] 于宏洲, 柳慧, 张运林, 等. 地表细小可燃物含水率野外自动记录监测系统设计与试验. 森林工程, 2022, 38(5): 38-47 [24] Masinda MM, Li F, Qi L, et al. Forest fire risk estimation in a typical temperate forest in Northeastern China using the Canadian forest fire weather index: Case study in autumn 2019 and 2020. Natural Hazards, 2022, 111: 1085-1101 [25] 陈妙金, 汪小钦, 吴思颖. 基于随机森林算法的水土流失影响因子重要性分析. 自然灾害学报, 2019, 28(4): 209-219 [26] 刘鑫源, 杨光, 宁吉彬, 等. 红松人工林地表可燃物燃烧释放颗粒物质量及影响因素. 林业科学, 2022, 58(3): 97-106 [27] 刘亚珲, 赵倩. 基于聚类经验模态分解的CNN-LSTM超短期电力负荷预测. 电网技术, 2021, 45(11): 4444-4451 [28] 朱凌建, 荀子涵, 王裕鑫, 等. 基于CNN-Bi LSTM的短期电力负荷预测. 电网技术, 2021, 45(11): 4532-4539 [29] Baranovskiy NV, Kirienko VA. Forest fuel drying, pyrolysis and ignition processes during forest fire: A review. Processes, 2022, 10: 0089 [30] 陆昕. 大兴安岭典型林分地表死可燃物含水率动态变化及预测模型研究. 硕士论文. 哈尔滨: 东北林业大学, 2016 [31] 刘祺. 帽儿山典型林分地表死可燃物含水率测预模型研究. 硕士论文. 哈尔滨: 东北林业大学, 2021 [32] 张运林. 老爷岭典型林分内地表不同层可燃物含水率动态变化及湿度码预测模型适用性. 东北林业大学学报, 2021, 49(3): 67-73 [33] 张运林, 孙萍, 满子源. 室内模拟降雨对蒙古栎和红松凋落物床层饱和含水率的影响. 中南林业科技大学学报, 2020, 40(9): 1-10 [34] Hiers JK, Stauhammer CL, O’Brien JJ, et al. Fine dead fuel moisture shows complex lagged responses to environmental conditions in a saw palmetto (Serenoa repens) flatwoods. Agricultural and Forest Meteorology, 2019, 266: 20-28 [35] 胡海清, 罗碧珍, 罗斯生, 等. 大兴安岭典型林型地表可燃物含水率预测模型. 中南林业科技大学学报, 2018, 38(11): 1-9 [36] Zhang JL, Cui XY, Wei R, et al. Evaluating the applicability of predicting dead fine fuel moisture based on the hourly fine fuel moisture code in the south-eastern Great Xing’an mountains of China. International Journal of Wildland Fire, 2017, 26: 167-175 [37] Flannigan MD, Wotton BM, Marshall GA, et al. Fuel moisture sensitivity to temperature and precipitation: Climate change implications. Climatic Change, 2016, 134: 59-71 [38] Bilgili E, Coskuner KA, Usta Y, et al. Diurnal surface fuel moisture prediction model for Calabrian pine stands in Turkey. iForest-Biogeosciences and Forestry, 2019, 12: 262-271 [39] 王珊, 冯仲科, 郁壮, 等. 模拟降雨下以小时为步长的崇礼区典型林分地表细小死可燃物含水率预测模型. 应用与环境生物学报, 2023, 29(4): 1-10 [40] 陆昕, 胡海清, 孙龙, 等. 大兴安岭地表细小死可燃物含水率预测模型. 东北林业大学学报, 2016, 44(7): 84-90 [41] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述. 计算机学报. 2017, 40(6): 1229-1251 [42] Lee H, Won M, Yoon S, et al. Estimation of 10-hour fuel moisture content using meteorological data: A model inter-comparison study. Forests, 2020, 11: 982 [43] 吴香华, 华亚婕, 官元红, 等. 基于CNN-Attention-BP的降水发生预测研究. 南京信息工程大学学报:自然科学版, 2022, 14(2): 148-155 [44] Rakhmatulina E, Stephens S, Thompson S. Soil moisture influences on Sierra Nevada dead fuel moisture content and fire risks. Forest Ecology and Management, 2021, 496: 119379 [45] Li Z, Marta Y, Albert IJM, et al. Representing vapour and capillary rise from the soil improves a leaf litter moisture model. Journal of Hydrology, 2022, 612: 128087 [46] 胡海清, 罗碧珍, 罗斯生, 等. 大兴安岭南瓮河落叶松-白桦混交林地表可燃物含水率. 生态学杂志, 2019, 38(5): 1314-1321 [47] 张运林, 向敏, 丁波. 直接估计法预测不同层凋落物含水率的适用性分析. 中南林业科技大学报, 2022(7): 9-19 [48] Víctor RDD, Fellows AW, Nolan RH, et al. A semi-mechanistic model for predicting the moisture content of fine litter. Agricultural & Forest Meteorology, 2015, 203: 64-73 |