应用生态学报 ›› 2020, Vol. 31 ›› Issue (9): 3207-3215.doi: 10.13287/j.1001-9332.202009.025
王欣玉, 刘勇波*
收稿日期:
2020-03-11
接受日期:
2020-06-20
出版日期:
2020-09-15
发布日期:
2021-03-15
通讯作者:
* E-mail: liuyb@craes.org.cn
作者简介:
王欣玉, 女, 1993年生, 硕士研究生。主要从事转基因作物生物安全评价研究。E-mail: 15313322571@163.com
基金资助:
WANG Xin-yu, LIU Yong-bo*
Received:
2020-03-11
Accepted:
2020-06-20
Online:
2020-09-15
Published:
2021-03-15
Contact:
* E-mail: liuyb@craes.org.cn
Supported by:
摘要: 随着转基因植物的大面积种植,转基因植物的生态风险受到广泛关注,其中主要的风险是转基因植物与近缘物种之间的基因流及其影响。本文综述了目前商业化种植的转基因作物油菜、棉花、玉米和大豆,以及未商业化种植的水稻、小麦的基因流研究进展;分析了不同转基因作物与其近缘种之间发生基因流的频率和最远发生距离;介绍了降低基因流发生的方法。基因流频率受物种亲缘关系、花期重叠时间、风速风向等因素的影响,最远发生距离受气候条件、传粉媒介、地理条件等因素的影响。转基因作物与其近缘种之间的基因流频率与距花粉源的距离呈负相关关系(y=-0.59x-0.46,R2=0.25,P<0.01),亲缘关系近的基因流频率高。为了降低转基因植物与其近缘物种之间的基因流风险,建议采取“分区管理”的策略,并加强基因流发生之后的生态风险评价研究。
王欣玉, 刘勇波. 转基因植物与近缘种之间基因流的研究进展[J]. 应用生态学报, 2020, 31(9): 3207-3215.
WANG Xin-yu, LIU Yong-bo. Research advances in gene flow between transgenic plants and their relatives[J]. Chinese Journal of Applied Ecology, 2020, 31(9): 3207-3215.
[1] James C. Global status of commercialized biotech/GM crops: 2018. ISAAA Brief No. 54. Ithaca, NY, USA: ISAAA [2] Ellstrand NC, Prentice HC, Hancock JF. Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology and Systematics, 1999, 30: 539-563 [3] Liu YB, Wei W, Ma KP, et al. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives. Plant Science, 2013, 211: 42-51 [4] Cuthbert JL, McVetty PBE. Plot-to-plot, row-to-row and plant-to-plant outcrossing studies in oilseed rape. Canadian Journal of Plant Science, 2001, 81: 657-664 [5] Scheffler JA, Parkinson R, Dale PJ. Frequency and distance of pollen dispersal from transgenic oilseed rape (Brassica napus). Transgenic Research, 1993, 2: 356-364 [6] Beckie HJ, Warwick SI, Nair H, et al. Gene flow in commercial fields of herbicide-resistant canola (Brassica napus). Ecological Applications, 2003, 13: 1276-1294 [7] Cai L, Zhou BW, Guo XL, et al. Pollen-mediated gene flow in Chinese commercial fields of glufosinate-resistant canola (Brassica napus). Chinese Science Bulletin, 2008, 53: 2333 [8] Rieger MA, Lamond M, Preston C, et al. Pollen-mediated movement of herbicide resistance between commercial canola fields. Science, 2002, 296: 2386-2388 [9] 浦惠明, 戚存扣, 张洁夫, 等. 转基因抗除草剂油菜对近缘作物的基因漂移. 生态学报, 2005, 25(3): 581-588 [Pu H-M, Qi C-K, Zhang J-F, et al. Studies on the gene flow from herbicide-tolerant GM rapeseed to its close relative crops. Acta Ecologica Sinica, 2005, 25(3): 581-588] [10] Scheffler JA, Parkinson R, Dale PJ. Evaluating the effectiveness of isolation distances for field plots of oilseed rape (Brassica napus) using a herbicide-resistance transgene as a selectable marker. Plant Breeding, 1995, 114: 317-321 [11] Morris WF, Kareiva PM, Raymer PL. Do barren zones and pollen traps reduce gene escape from transgenic crops? Ecological Applications, 1994, 4: 157-165 [12] Staniland BK, McVetty PB, Friesen LF, et al. Effectiveness of border areas in confining the spread of transgenic Brassica napus pollen. Canadian Journal of Plant Science, 2000, 80: 521-526 [13] Wei W, Shen BC, Tang ZX, et al. Gene flow from transgenic oilseed rape to Chinese conspecific landrace under field conditions and its implication for China. The 12th International Rapeseed Congress. Ⅱ. Sustainable Development in Cruciferous Oilseed Crops Production, Wuhan, China, 2007: 96-98 [14] 浦惠明, 戚存扣, 张洁夫, 等. 转基因抗除草剂油菜对十字花科杂草的基因漂移. 生态学报, 2005, 25(4): 910-916 [Pu H-M, Qi C-K, Zhang J-F, et al. The studies on gene flow from GM herbicide-tolerant rapeseed to cruciferous weeds. Acta Ecologica Sinica, 2005, 25(4): 910-916] [15] Liu YB, Wei W, Ma KP, et al. Backcrosses to Brassica napus of hybrids between B. juncea and B. napus as a source of herbicide-resistant volunteer-like feral populations. Plant Science, 2010, 179: 459-465 [16] Liu YB, Stewart CN, Li JS, et al. One species to ano-ther: Sympatric Bt transgene gene flow from Brassica napus alters the reproductive strategy of wild relative Brassica juncea under herbivore treatment. Annals of Botany, 2018, 122: 617-625 [17] 宋小玲, 皇甫超河, 强胜. 抗草丁膦和抗草甘膦转基因油菜的抗性基因向野芥菜的流动. 植物生态学报, 2007, 31(4): 729-737 [Song X-L, Huangpu C-H, Qiang S. Gene flow from transgenic glufosinate-or glyphosate-tolerant oilseed rape to wild rape. Chinese Journal of Plant Ecology, 2007, 31(4): 729-737] [18] Bing DJ, Downey RK, Rakow GFW. Hybridizations among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breeding, 1996, 115: 470-473 [19] Séguin-Swartz G, Beckie HJ, Warwick SI, et al. Pollen-mediated gene flow between glyphosate-resistant Brassica napus canola and B. juncea and B. carinata mustard crops under large-scale field conditions in Saskatchewan. Canadian Journal of Plant Science, 2013, 93: 1083-1087 [20] Jørgensen RB, Andersen B, Landbo L, et al. Spontaneous hybridization between oilseed rape (Brassica napus) and weedy relatives. Acta Horticulturae, 1996, 407: 193-200 [21] Scheffler JA, Dale PJ. Opportunities for gene transfer from transgenic oilseed rape (Brassica napus) to related species. Transgenic Research, 1994, 3: 263-278 [22] Jørgensen RB, Andersen B. Spontaneous hybridization between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae): A risk of growing genetically modified oilseed rape. American Journal of Botany, 1994, 81: 1620-1626 [23] Landbo L, Andersen B, Jørgensen RB. Natural hybridisa-tion between oilseed rape and a wild relative: Hybrids among seeds from weedy B. campestris. Hereditas, 1996, 125: 89-91 [24] Scott SE, Wilkinson MJ. Transgene risk is low. Nature, 1998, 393: 320 [25] Wilkinson MJ, Davenport IJ, Charters YM, et al. A direct regional scale estimate of transgene movement from genetically modified oilseed rape to its wild progeni-tors. Molecular Ecology, 2000, 9: 983-991 [26] Warwick SI, Simard MJ, Légère A, et al. Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) OE Schulz. Theoretical and Applied Genetics, 2003, 107: 528-539 [27] Halfhill MD, Millwood RJ, Raymer PL, et al. Bt-transgenic oilseed rape hybridization with its weedy relative, Brassica rapa. Environmental Biosafety Research, 2002, 1: 19-28 [28] Halfhill MD, Zhu B, Warwick SI, et al. Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions. Environmental Biosafety Research, 2004, 3: 73-81 [29] Hansen LB, Siegismund HR, Jørgensen RB. Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population. Genetic Resources and Crop Evolution, 2001, 48: 621-627 [30] Chèvre AM, Eber F, Darmency H, et al. Assessment of interspecific hybridization between transgenic oilseed rape and wild radish under normal agronomic conditions. Theoretical and Applied Genetics, 2000, 100: 1233-1239 [31] Darmency H, Lefol E, Fleury A. Spontaneous hybridizations between oilseed rape and wild radish. Molecular Ecology, 1998, 7: 1467-1473 [32] Moyes CL, Lilley JM, Casais CA, et al. Barriers to gene flow from oilseed rape (Brassica napus) into populations of Sinapis arvensis. Molecular Ecology, 2002, 11: 103-112 [33] Ford CS, Allainguillaume J, Grilli-Chantler P, et al. Spontaneous gene flow from rapeseed (Brassica napus) to wild Brassica oleracea. Proceedings of the Royal Society B: Biological Sciences, 2006, 273: 3111-3115 [34] 张长青, 吕群燕, 王志兴, 等. 抗2,4-D转基因棉花基因漂流频率的研究. 中国农业科学, 1997, 30(1): 92-93 [Zhang C-Q, Lv Q-Y, Wang Z-X, et al. Frequency of 2,4-D resistant gene flow of transgenic cotton. Scientia Agricultura Sinica, 1997, 30(1): 92-93] [35] 张宝红, 郭腾龙. 转基因棉花基因花粉散布频率及距离的研究. 应用与环境生物学报, 2000, 6(1): 39-42 [Zhang B-H, Guo T-L. Frequency and distance of pollen diapersal from transgenic cotton.Chinese Journal of Applied and Enviromental Biology, 2000, 6(1): 39-42] [36] 沈法富, 于元杰, 张学坤, 等. 转基因棉花的Bt基因流. 遗传学报, 2001, 28(6): 562-567 [ Shen F-F, Yu Y-J, Zhang X-K, et al. Bt gene flow of transgenic cotton. Acta Gebetica Sinica, 2011, 28(6): 562-567] [37] 王长永, 刘燕, 周骏, 等. 花粉介导的转Bt基因棉花田间基因流监测. 应用生态学报, 2007, 18(4): 801-806 [Wang C-Y, Liu Y, Zhou J, et al. Monitoring of pollen-mediated gene flow from transgenic Bt cotton. Chinese Journal of Applied Ecology, 2007, 18(4): 801-806] [38] Umbeck PF, Barton KA, Nordheim EV, et al. Degree of pollen dispersal by insects from a field test of genetically engineered cotton. Journal of Economic Entomology, 1991, 84: 1943-1950 [39] Van Deynze AE, Sundstrom FJ, Bradford KJ. Pollen-mediated gene flow in California cotton depends on pollinator activity. Crop Science, 2005, 45: 1565-1570 [40] Llewellyn D, Fitt G. Pollen dispersal from two field trials of transgenic cotton in the Namoi Valley, Australia. Molecular Breeding, 1996, 2: 157-166 [41] Luna VS, Figueroa MJ, Baltazar MR, et al. Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Science, 2001, 41: 1551-1557 [42] Bannert M, Stamp P. Cross-pollination of maize at long distance. European Journal of Agronomy, 2007, 27: 44-51 [43] Kawashima S, Nozaki H, Hamazaki T, et al. Environmental effects on long-range outcrossing rates in maize. Agriculture, Ecosystems and Environment, 2011, 142: 410-418 [44] Dalton R, Diego S. Transgenic corn found growing in Mexico. Nature, 2001, 413: 337 [45] Baltazar BM, Castro Espinoza L, Espinoza Banda A, et al. Pollen-mediated gene flow in maize: Implications for isolation requirements and coexistence in Mexico, the center of origin of maize. PLoS One, 2015, 10(7): e0131549 [46] Weekes R, Allnutt T, Boffey C, et al. A study of crop-to-crop gene flow using farm scale sites of fodder maize (Zea mays L.) in the UK. Transgenic Research, 2007, 16: 203-211 [47] Jemison JM, Vayda ME. Cross pollination from genetically engineered corn: Wind transport and seed source. Agbioforum, 2001, 4: 87-92 [48] Liu YB, Chen FJ, Xiao G, et al. High crop barrier reduces gene flow from transgenic to conventional maize in large fields. European Journal of Agronomy, 2015, 71: 135-140 [49] Viljoen C, Chetty L. A case study of GM maize gene flow in South Africa. Environmental Sciences Europe, 2011, 23: 8, doi: 10.1186/2190-4715-23-8 [50] Van De Wiel CCM, Groeneveld RMW, Dolstra O, et al. Pollen-mediated gene flow in maize tested for coexistence of GM and non-GM crops in the Netherlands: Effect of isolation distances between fields. NJAS-Wageningen Journal of Life Sciences, 2009, 56: 405-423 [51] Doebley J. Molecular evidence for gene flow among Zea species. BioScience, 1990, 40: 443-448 [52] Martinez-Soriano JPR, Leal-Klevezas DS. Transgenic maize in Mexico: No need for concern. Science, 2000, 287: 1399 [53] Ray JD, Kilen TC, Abel CA, et al. Soybean natural cross-pollination rates under field conditions. Environmental Biosafety Research, 2003, 2: 133-138 [54] Ahrent DK, Caviness CE. Natural cross-pollination of twelve soybean cultivars in Arkansas. Crop Science, 1994, 34: 376-378 [55] Wang KJ, Li XH. Pollen dispersal of cultivated soybean into wild soybean under natural conditions. Crop Science, 2013, 53: 2497-2505 [56] 刘琦, 李希臣, 刘昭军, 等. 抗草甘膦转基因大豆基因漂移的研究. 江苏农业学报, 2008, 24(suppl.): 84-87 [Liu Q, Li X-C, Liu Z-J, et al. Study on gene flow of roundup soybean with CP4 EPSPS. Jiangsu Journal of Agricultural Sciences, 2008, 24(suppl.): 84-87] [57] 刘杰, 周波, 杨春燕, 等. 抗草甘膦转EPSPS大豆的基因漂移研究. 大豆科学, 2012, 31(4): 517-521 [Liu J, Zhou B, Yang C-Y, et al. Gene flowing of genetically modified glyphosate-resistant soybean with EPSPS. Soybean Science, 2012, 31(4): 517-521] [58] Abud S, De Souza PIM, Vianna GR, et al. Gene flow from transgenic to nontransgenic soybean plants in the Cerrado region of Brazil. Genetics and Molecular Research, 2007, 6: 445-452 [59] Yoshimura Y, Matsuo K, Yasuda K. Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan. Environmental Biosafety Research, 2006, 5: 169-173 [60] Guan ZJ, Zhang PF, Wei W, et al. Performance of hybrid progeny formed between genetically modified herbicide-tolerant soybean and its wild ancestor. AoB Plants, 2015, 7: plv121, doi:10.1093/aobpla/plv121 [61] Wang KJ, Li XH. Interspecific gene flow and the origin of semi-wild soybean revealed by capturing the natural occurrence of introgression between wild and cultivated soybean populations. Plant Breeding, 2011, 130: 117-127 [62] Nakayama Y, Yamaguchi H. Natural hybridization in wild soybean (Glycine max ssp. soja) by pollen flow from cultivated soybean (Glycine max ssp. max) in a designed population. Weed Biology and Management, 2002, 2: 25-30 [63] Kuroda Y, Kaga A, Tomooka N, et al. Gene flow and genetic structure of wild soybean (Glycine soja) in Japan. Crop Science, 2008, 48: 1071-1079 [64] 陈新, 严继勇, 高兵. 野生大豆抗草甘膦基因漂移的初步研究. 中国油料作物学报, 2004, 26(2): 89-91 [Chen X, Yan J-Y, Gao B. Preliminary study on roundup ready soybean’s round-up ready gene move to wild soybean. Chinese Journal of Oil Crop Sciences, 2004, 26(2): 89-91] [65] Song ZP, Lu BR, Chen JK. A study of pollen viability and longevity in Oryza rufipogon, O. sativa, and their hybrids. International Rice Research Notes, 2001, 26: 31-32 [66] Rong J, Song ZP, Su J, et al. Low frequency of transgene flow from Bt/CpTI rice to its nontransgenic counterparts planted at close spacing. New Phytologist, 2005, 168: 559-566 [67] Messeguer J, Marfa V, Catala MM, et al. A field study of pollen-mediated gene flow from Mediterranean GM rice to conventional rice and the red rice weed. Molecular Breeding, 2004, 13: 103-112 [68] Messeguer J, Fogher C, Guiderdoni E, et al. Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker. Theoretical and Applied Genetics, 2001, 103: 1151-1159 [69] Rong J, Lu BR, Song Z, et al. Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. New Phytologist, 2007, 173: 346-353 [70] Jia SR, Wang F, Shi L, et al. Transgene flow to hybrid rice and its male-sterile lines. Transgenic Research, 2007, 16: 491-501 [71] Song ZP, Lu BR, Zhu YG, et al. Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytologist, 2003, 157: 657-665 [72] Chen LJ, Lee DS, Song ZP, et al. Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Annals of Botany, 2004, 93: 67-73 [73] Wang F, Yuan QH, Shi L, et al. A large-scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O. rufipogon) and barnyard grass (Echinochloa crusgalli). Plant Biotechnology Journal, 2006, 4: 667-676 [74] Sun G, Dai W, Cui R, et al. Gene flow from glufosinate-resistant transgenic hybrid rice Xiang 125S/Bar68-1 to weedy rice and cultivated rice under different experimental designs. Euphytica, 2015, 204: 211-227 [75] Zhang NY, Linscombe S, Oard J. Out-crossing frequency and genetic analysis of hybrids between transgenic glufosinate herbicide-resistant rice and the weed, red rice. Euphytica, 2003, 130: 35-45 [76] Shivrain VK, Burgos NR, Anders MM, et al. Gene flow between ClearfieldTM rice and red rice. Crop Protection, 2007, 26: 349-356 [77] Shivrain VK, Burgos NR, Gealy DR, et al. Maximum outcrossing rate and genetic compatibility between red rice (Oryza sativa) biotypes and ClearfieldTM rice. Weed Science, 2008, 56: 807-813 [78] Serrat X, Esteban R, Peñas G, et al. Direct and reverse pollen-mediated gene flow between GM rice and red rice weed. AoB Plants, 2013, 5: plt050, doi:10.1093/aobpla/plt050 [79] 李慧敏, 赵凤梧, 李爱国, 等. 旱稻(Oryza sativa)×长芒稗(Echinochloa caudata)远缘杂交后代结实率及杂种优势分析. 核农学报, 2003, 17(1): 11-15 [Li H-M, Zhao F-W, Li A-G, et al. Study on seed set and heteroses of distant cross of upland rice (Oryza sativa) × long-awn-barnyard-grass (Echinochloa caudata). Journal of Nuclear Agricultural Sciences, 2003, 17(1): 11-15] [80] Hucl P, Matus-Cádiz M. Isolation distances for minimizing out-crossing in spring wheat. Cropence, 2001, 41: 1348-1351 [81] Matus-Cádiz MA, Hucl P, Dupuis B. Pollen-mediated gene flow in wheat at the commercial scale. Crop Science, 2007, 47: 573-581 [82] Matus-Cádiz MA, Hucl P, Horak MJ, et al. Gene flow in wheat at the field scale. Cropence, 2004, 44: 718-727 [83] Hanson BD, Mallory-Smith CA, Shafii B, et al. Pollen-mediated gene flow from blue aleurone wheat to other wheat cultivars. Crop Science, 2005, 45: 1610-1617 [84] 石雪, 董姗姗, 于赐刚, 等. 转WYMV-Nib8 基因抗黄花叶病小麦花粉漂移研究. 生态与农村环境学报, 2015, 31(4): 522-527 [Shi X, Dong S-S, Yu C-G, et al. Pollen flow of transgenic WYMV-Nib8 wheat resis-tant of yellow mosaic virus. Journal of Ecology and Rural Environment, 2015, 31(4): 522-527] [85] Dong SS, Liu Y, Yu CG, et al. Investigating pollen and gene flow of WYMV-resistant transgenic wheat N12-1 using a dwarf male-sterile line as the pollen receptor. PLoS One, 2016, 11(3): e0151373 [86] Rieben S, Kalinina O, Schmid B, et al. Gene flow in genetically modified wheat. PLoS One, 2011, 6(12): e29730 [87] Miroshnichenko D, Pushin A, Dolgov S. Assessment of the pollen-mediated transgene flow from the plants of herbicide resistant wheat to conventional wheat (Triticum aestivum L.). Euphytica, 2016, 209: 71-84 [88] Willenborg CJ, Brule-Babel AL, Van Acker RC. Low crop plant population densities promote pollen-mediated gene flow in spring wheat (Triticum aestivum L.). Transgenic Research, 2009, 18: 841-854 [89] Gaines TA, Byrne PF, Westra P, et al. An empirically derived model of field-scale gene flow in winter wheat. Crop Science, 2007, 47: 2308-2316 [90] Beckie HJ, Warwick SI, Sauder CA, et al. Pollen-mediated gene flow in commercial fields of spring wheat in western Canada. Crop Science, 2011, 51: 306-313 [91] Gatford KT, Basri Z, Edlington J, et al. Gene flow from transgenic wheat and barley under field conditions. Euphytica, 2006, 151: 383-391 [92] Langhof M, Hommel B, Hüsken A, et al. Coexistence in maize: Do nonmaize buffer zones reduce gene flow between maize fields? Crop Science, 2008, 48: 305-316 [93] 魏伟, 马克平. 转基因与生物安全. 中国科学院院刊, 2016, 31(4): 405-413 [Wei W, Ma K-P. Transgenic organisms and biosafety. Bulletin of Chinese Aca-demy of Sciences, 2016, 31(4): 405-413] [94] 李允静, 卢长明, 王旭静, 等. 主要农作物转基因飘流频率和距离的数据调研与分析. Ⅴ. 油菜. 中国农业科技导报, 2012, 14(1): 49-56 [Li Y-J, Lu C-M, Wang X-J, et al. Data survey and analysis of transgene flow frequencies and distances in major crops. V. Rapeseed. Journal of Agricultural Science and Technology, 2012, 14(1): 49-56] [95] 敖光明, 王志兴, 王旭静, 等. 主要农作物转基因飘流频率和距离的数据调研与分析. Ⅳ. 玉米. 中国农业科技导报, 2011, 13(6): 27-32 [Ao G-M, Wang Z-X, Wang X-J, et al. Data survey and analysis of the transgene flow frequencies and distances in major crops. Ⅳ. Maize. Journal of Agricultural Science and Technology, 2011, 13(6): 27-32] [96] Ford CS, Allainguillaume J, Fu TYR, et al. Assessing the value of imperfect biocontainment nationally: Rapeseed in the United Kingdom as an exemplar. New Phyto-logist, 2015, 205: 1342-1349 [97] Gressel J. Dealing with transgene flow of crop protection traits from crops to their relatives. Pest Management Science, 2015, 71: 658-667 [98] Dong JJ, Zhang MG, Wei W, et al. GIS assessment of the risk of gene flow from Brassica napus to its wild relatives in China. Environmental Monitoring and Assessment, 2018, 190: 405 [99] Sanchez MA, Cid P, Navarrete H, et al. Outcrossing potential between 11 important genetically modified crops and the Chilean vascular flora. Plant Biotechnology Journal, 2016, 14: 625-637 |
[1] | 梁仕豪, 李文, 高宇, 刘保住. 吉林省生态系统服务价值与景观生态风险关联性及其空间分异 [J]. 应用生态学报, 2024, 35(3): 769-779. |
[2] | 陈森森, 任文杰, 滕应. 农田土壤氟磺胺草醚残留特征、生态风险与消减研究进展 [J]. 应用生态学报, 2023, 34(3): 815-824. |
[3] | 张峻铭, 孙永玉, 周姗, 邱昕腾, 孙仕仙, 欧朝蓉. 2000—2020年金沙江干热河谷景观生态风险的时空变化 [J]. 应用生态学报, 2023, 34(10): 2767-2776. |
[4] | 潘卫涛, 岳邦瑞, 姚龙杰, 薛建锋, 李军峰. 耦合风险与服务的市域生态安全格局构建——以陕西省咸阳市为例 [J]. 应用生态学报, 2023, 34(1): 178-186. |
[5] | 陈瑶, 刘金, 张颖昕, 李佳旸, 李桂菊. 环境中的黑色微塑料——轮胎磨损颗粒的来源、迁移扩散及环境风险 [J]. 应用生态学报, 2022, 33(8): 2260-2270. |
[6] | 朱润苗, 陈松林. 1980—2020年福建省景观生态风险与生态系统服务价值的空间关系 [J]. 应用生态学报, 2022, 33(6): 1599-1607. |
[7] | 蔡天贵, 张龙, 张晋东. 抗生素抗性基因的生态风险研究进展 [J]. 应用生态学报, 2022, 33(5): 1435-1440. |
[8] | 高彬嫔, 李琛, 吴映梅, 郑可君, 武燕. 川滇生态屏障区景观生态风险评价及影响因素 [J]. 应用生态学报, 2021, 32(5): 1603-1613. |
[9] | 靳甜甜, 张云霞, 朱月华, 巩杰, 燕玲玲. 黄土高原林区生态系统服务价值与景观生态风险时空变化及其关联性——以子午岭区为例 [J]. 应用生态学报, 2021, 32(5): 1623-1632. |
[10] | 常文静, 李枝坚, 周妍姿, 曾辉. 深圳市不同功能区土壤表层重金属污染及其综合生态风险评价 [J]. 应用生态学报, 2020, 31(3): 999-1007. |
[11] | 丁腾达, 李雯, 阚啸林, 李菊英. 水环境中药物和个人护理品(PPCPs)的污染现状及对藻类的毒性研究进展 [J]. 应用生态学报, 2019, 30(9): 3252-3264. |
[12] | 陈弼锴, 赵宇豪, 吴健生. 深圳市基本生态控制线对景观生态风险的影响 [J]. 应用生态学报, 2019, 30(11): 3885-3893. |
[13] | 王慧芳, 林子雁, 肖燚, 卢慧婷, 章文, 詹云军, 严岩. 基于生态系统服务潜在损失的滑坡灾害生态风险评价 [J]. 应用生态学报, 2019, 30(10): 3553-3562. |
[14] | 张立娜, 宫晓双, 安婧, 魏树和. 三氯生的环境残留、降解代谢及其潜在生态风险 [J]. 应用生态学报, 2018, 29(9): 3139-3146. |
[15] | 刘长利, 郑国砥, 王磊, 陈同斌, 邵珠泽, 陈琳. 养猪场空气中抗性基因和条件致病菌污染特征 [J]. 应用生态学报, 2018, 29(8): 2730-2738. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||