应用生态学报 ›› 2020, Vol. 31 ›› Issue (12): 4312-4320.doi: 10.13287/j.1001-9332.202012.021
许云翔1,2, 何莉莉2,3, 陈金媛1, 刘玉学2,3, 吕豪豪2,3, 汪玉瑛2,3, 杨生茂1,2,3*
收稿日期:
2020-06-22
接受日期:
2020-09-09
发布日期:
2021-06-15
通讯作者:
*E-mail: yangshengmao@263.net
作者简介:
许云翔,男,1994年生,硕士研究生。主要从事生物炭对土壤氮素循环及农业环境的影响研究。E-mail:xuyunxiang2018@163.com
基金资助:
XU Yun-xiang1,2, HE Li-li2,3, CHEN Jin-yuan1, LIU Yu-xue2,3, LYU Hao-hao2,3, WANG Yu-ying2,3, YANG Sheng-mao1,2,3*
Received:
2020-06-22
Accepted:
2020-09-09
Published:
2021-06-15
Contact:
*E-mail: yangshengmao@263.net
Supported by:
摘要: 降低土壤氨挥发量是农田生态系统中减少土壤氮素损失、提高氮肥利用率的关键途径之一。生物炭具有独特的理化性质,施入土壤后可改变土壤理化性状,影响土壤氮素循环,并对农田土壤中氨挥发产生重要的影响。本文首先介绍了稻田和旱田两种土地利用方式下农田氨挥发过程及其影响因素(气候条件、土壤环境、施肥管理等);其次,重点综述了生物炭对农田生态系统氨挥发影响的研究进展,并从物理吸附机制、气液平衡机制、生物化学过程调节机制等方面探讨了生物炭介入下农田土壤氨挥发的响应机制,认为土壤氨挥发减排的响应主要是基于生物炭表面含氧官能团对土壤NH4+和NH3的吸附作用及促进土壤硝化作用;而生物炭增加土壤氨挥发排放主要与生物炭提高土壤pH值和透气性、增强土壤有机氮矿化微生物活性有关。最后,对生物炭减少土壤氨挥发、提高氮肥利用率的研究方向进行了展望。
许云翔, 何莉莉, 陈金媛, 刘玉学, 吕豪豪, 汪玉瑛, 杨生茂. 生物炭对农田土壤氨挥发的影响机制研究进展[J]. 应用生态学报, 2020, 31(12): 4312-4320.
XU Yun-xiang, HE Li-li, CHEN Jin-yuan, LIU Yu-xue, LYU Hao-hao, WANG Yu-ying, YANG Sheng-mao. Effects of biochar on ammonia volatilization from farmland soil: A review.[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4312-4320.
[1] 中华人民共和国农业部. 中国农业年鉴. 北京: 中国农业出版社, 2015: 15-16 [Ministry of Agriculture of the People's Republic of China. China Agriculture Yearbook. Beijing: China Agriculture Press, 2015: 15-16] [2] Bodirsky BL, Popp A, Lotze-Campen H, et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications, 2014, 5: 3858-3865 [3] Azeem B, Kushaari KZ, Man ZB, et al. Review on materials and methods to produce controlled release coated urea fertilizer. Journal of Controlled Release, 2014, 181: 11-21 [4] Xing GX, Zhu ZL. An assessment of N loss from agricultural fields to the environment in China. Nutrient Cycling in Agroecosystems, 2000, 57: 67-73 [5] 朱兆良, 张绍林, 尹斌, 等. 太湖地区单季晚稻产量-氮肥施用量反应曲线的历史比较. 植物营养与肥料学报, 2010, 16(1): 1-5 [Zhu Z-L, Zhang S-L, Yin B, et al. Historical comparison on the response curves of rice yield-nitrogen application rate in Tai Lake Region. Plant Nutrition and Fertilizer Science, 2010, 16(1): 1-5] [6] Fan XH, Yong S, Lin DX, et al. Ammonia volatilization losses and 15N balance from urea applied to rice on a paddy soil. Journal of Environmental Sciences, 2006, 18: 299-303 [7] Chen X, Cui Z, Fan M, et al. Producing more grain with lower environmental costs. Nature, 2014, 514: 486-489 [8] Erisman JW, Schaap M. The need for ammonia abatement with respect to secondary PM reductions in Europe. Environmental Pollution, 2004, 129: 159-163 [9] Sun B, Zhang LX, Yang Z, et al. Agricultural non-point source pollution in China: Causes and mitigation mea-sures. Ambio, 2012, 41: 370-379 [10] Pacifico F, Delon C, Jambert C, et al. Measurements of nitric oxide and ammonia soil fluxes from a wet savanna ecosystem site in West Africa during the DACCIWA field campaign. Atmospheric Chemistry and Physics, 2018, 2018: 1-37 [11] 李鑫, 巨晓棠, 张丽娟, 等. 不同施肥方式对土壤氨挥发和氧化亚氮排放的影响. 应用生态学报, 2008, 19(1): 99-104 [Li X, Ju X-T, Zhang L-J, et al. Effects of different fertilization modes on soil ammonia volatilization and nitrous oxide emission. Chinese Journal of Applied Ecology, 2008, 19(1): 99-104] [12] 许云翔, 何莉莉, 刘玉学, 等. 施用生物炭6年后对稻田土壤酶活性及肥力的影响. 应用生态学报, 2019, 30(4): 1110-1118 [Xu Y-X, He L-L, Liu Y-X, et al. Effects of biochar addition on enzyme activity and fertility in paddy soil after six years. Chinese Journal of Applied Ecology, 2019, 30(4): 1110-1118] [13] Lehmann J, Joseph S. Biochar for Environmental Mana-gement: Science, Technology and Implementation. London: Routledge, 2015: 15801-15811 [14] Mandal S, Thangarajan R, Bolan NS, et al. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere, 2015, 142: 120-127 [15] Kastner JR, Miller J, Das KC. Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars. Journal of Hazardous Materials, 2009, 164: 1420-1427 [16] Korus A, Szlęk A, Samson A. Physicochemical properties of biochars prepared from raw and acetone-extracted pine wood. Fuel Processing Technology, 2019, 185: 106-116 [17] Sun HJ, Zhang HL, Min J, et al. Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Paddy and Water Environment, 2016, 14: 105-111 [18] Feng Y, Sun H, Xue L, et al. Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere, 2017, 168: 1277-1284 [19] Zhao SY, Bin Y, Zhu ZL. Model estimation of volatilization of ammonia applied with surface film-forming material. Pedosphere, 1999, 9: 299-304 [20] 宋勇生, 范晓晖. 稻田氨挥发研究进展. 生态环境, 2003, 2(2): 240-244 [Song Y-S, Fan X-H. Summanry of research on ammonia volatilization in paddy soil. Ecology and Environment, 2003, 2(2): 240-244] [21] 赵斌, 董树亭, 王空军, 等. 控释肥对夏玉米产量及田间氨挥发和氮素利用率的影响. 应用生态学报, 2009, 20(11): 2678-2684[Zhao B, Dong S-T, Wang K-J, et al. Effects of controlled-release fertilizers on summer maize grain yield, field ammonia volatilization, and fertilizer nitrogen use efficiency. Chinese Journal of Applied Ecology, 2009, 20(11): 2678-2684] [22] Li M, Wang Y, Adeli A, et al. Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa. Field Crops Research, 2018, 218: 115-125 [23] Sha Z, Li Q, Lyu T, et al. Response of ammonia volati-lization to biochar addition: A meta-analysis. Science of the Total Environment, 2019, 655: 1387-1396 [24] Zhang Y, Luan S, Chen L, et al. Estimating the volatili-zation of ammonia from synthetic nitrogenous fertilizers used in China. Journal of Environmental Management, 2011, 92: 480-493 [25] 蔡贵信. 农田中氮肥的氨挥发. 氮素循环与农业和环境学术研讨会, 厦门, 2001: 21-22 [Cai G-X. Ammonia volatilization from nitrogen fertilizer in farmland. Symposium on Nitrogen Cycle and Agriculture and Environment, Xiamen, 2001: 21-22] [26] Ndegwa PM, Hristov AN, Arogo J, et al. A review of ammonia emission mitigation techniques for concentrated animal feeding operations. Biosystems Engineering, 2008, 100: 453-469 [27] Sommer SG, Olesen JE, Christensen BT. Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry. Journal of Agricultural Science, 1991, 117: 91-100 [28] Yang J, Jiao Y, Yang WZ, et al. Review of methods for determination of ammonia volatilization in farmland. IOP Conference Series Earth and Environmental Science, 2018, 113: 8-10 [29] 王文林, 刘波, 韩睿明, 等. 农业源氨排放影响因素研究进展. 生态与农村环境学报, 2016, 32(6): 870-878 [Wang W-L, Liu B, Han R-M, et al. Review of researches on factors affecting emission of ammonia from agriculture. Journal of Ecology and Rural Environment, 2016, 32(6): 870-878] [30] 徐卓, 王寅, 冯国忠, 等. 尿素硝酸铵溶液在不同类型土壤中的氨挥发特性. 吉林农业大学学报, 2018, 40(5): 610-616 [Xu Z, Wang Y, Feng G-Z, et al. Ammonia volatilization characteristics of urea ammonium nitrate solution in different soil types. Journal of Jilin Agricultural University, 2018, 40(5): 610-616] [31] 陈海潇. 不同类型土壤氨挥发特性和硝态氮累积的研究. 硕士论文. 长春: 吉林农业大学, 2015 [Chen H-X. Ammonia Volatilization Characteristics and Nitrate Nitrogen Accumulation of Different Types of Soils. Master Thesis. Changchun: Jilin Agricultural University, 2015] [32] 张庆利, 张民, 杨越超, 等. 碳酸氢铵和尿素在山东省主要土壤类型上的氨挥发特性研究. 土壤通报, 2002, 33(1): 32-34 [Zhang Q-L, Zhang M, Yang Y-C, et al. Volatilization of ammonium bicarbonate and urea in main soil of Shandong Province. Chinese Journal of Soil Science, 2002, 33(1): 32-34] [33] Shan L, He Y, Chen J, et al. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. Journal of Environmental Sciences, 2015, 38: 14-23 [34] 吴艳香. 土壤氨挥发方法优选及不同pH值的影响. 贵州科学, 2017, 35(5): 85-90 [Wu Y-X. Optimization of ammonia volatilization testing methods and effects of pH value on ammonia volatilization. Guizhou Science, 2017, 35(5): 85-90] [35] Martín JBJ, Bradford BN, Kennedy HG. Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land. Paris: International Fertilizer Industry Association, 2001: 59-60 [36] 邹长明, 颜晓元, 八木一行. 淹水条件下的氨挥发研究. 中国农学通报, 2005, 21(2): 167-170 [Zou C-M, Yan X-Y, Yagi K. Measurements of ammonia volatili-zation from paddy soils. Chinese Agricultural Science Bulletin, 2005, 21(2): 167-170] [37] Fan XH, Li YC, Alva AK. Effects of temperature and soil type on ammonia volatilization from slow-release nitrogen fertilizers. Communications in Soil Science and Plant Analysis, 2011, 42: 1111-1122 [38] Zhang YZ, Huang SH, Wan DJ, et al. Fixed ammonium content and maximum capacity of ammonium fixation in major types of tillage soils in Hunan Province, China. Agricultural Sciences in China, 2007, 6: 466-474 [39] 武岩, 红梅, 林立龙,等. 不同施肥措施对河套灌区盐化潮土氨挥发及氧化亚氮排放的影响. 土壤, 2017, 49(4): 745-752 [Wu Y, Hong M, Lin L-L, et al. Influence of different fertilization measures on NH3 volatilization and N2O emission in salined flavo-aquic soil of Hetao irrigation area. Soils, 2017, 49(4): 745-752] [40] Rochette P, Angers DA, Chantigny MH, et al. Ammonia volatilization following surface application of urea to tilled and no-till soils: A laboratory comparison. Soil and Tillage Research, 2009, 103: 310-315 [41] 山楠, 韩圣慧, 刘继培, 等. 不同肥料施用对设施菠菜地NH3挥发和N2O排放的影响. 环境科学, 2018, 39(10): 4705-4716 [Shan N, Han S-H, Liu J-P, et al. Emission of NH3 and N2O from spinach field treated with different fertilizers. Environmental Science, 2018, 39(10): 4705-4716] [42] Chu HY, Hosen Y, Yagi K, et al. Soil microbial biomass and activities in a Japanese Andisol as affected by controlled release and application depth of urea. Biology and Fertility of Soils, 2005, 42: 89-96 [43] Feng YF, Sun HJ, Xue LH, et al. Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere, 2017, 168: 1277-1284 [44] 赵进, 赵旭, 王慎强, 等. 长期秸秆黑炭施加对石灰性潮土肥力、固碳及氨挥发的影响. 应用生态学报, 2018, 29(1): 176-184 [Zhao J, Zhao X, Wang S-Q, et al. Effects of successive incorporation of rice straw biochar into alkaline soil on soil fertility, carbon sequestration and ammonia volatilization. Chinese Journal of Applied Ecology, 2018, 29(1): 176-184] [45] 董玉兵, 吴震, 李博, 等. 追施生物炭对稻麦轮作中麦季氨挥发和氮肥利用率的影响. 植物营养与肥料学报, 2017, 23(5): 1258-1267 [Dong Y-B, Wu Z, Li B, et al. Effects of biochar reapplication on ammonia volatilization and nitrogen use efficiency during wheat season in a rice-wheat annual rotation system. Journal of Plant Nutrition and Fertilizers, 2017, 23(5): 1258-1267] [46] Wang Z, Zong H, Zheng H, et al. Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere, 2015, 138: 576-583 [47] Chen CR, Phillips IR, Condron LM, et al. Impacts of greenwaste biochar on ammonia volatilisation from bau-xite processing residue sand. Plant and Soil, 2013, 367: 301-312 [48] Mandal S, Thangarajan R, Bolan NS, et al. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere, 2016, 142: 120-127 [49] Chen W, Liao XD, Wu YB, et al. Effects of different types of biochar on methane and ammonia mitigation during layer manure composting. Waste Management, 2017, 61: 506-515 [50] 刘玮晶, 刘烨, 高晓荔, 等. 外源生物质炭对土壤中铵态氮素滞留效应的影响. 农业环境科学学报, 2012, 31(5): 962-968 [Liu W-J, Liu Y, Gao X-L, et al. Effects of biomass charcoals on retention of ammonium nitrogen in soils. Journal of Agro-Environment Science, 2012, 31(5): 962-968] [51] Sha ZP, Li QQ, Lyu TT, et al. Response of ammonia volatilization to biochar addition: A meta-analysis. Science of the Total Environment, 2018, 655: 1387-1396 [52] Spokas KA, Cantrell KB, Novak JM, et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality, 2012, 41: 973-989 [53] Yang HI, Lou K, Rajapaksha AU, et al. Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars. Environmental Science and Pollution Research, 2017, 25: 25638-25647 [54] 王朝旭, 陈绍荣, 张峰, 等. 玉米秸秆生物炭及其老化对石灰性农田土壤氨挥发的影响. 农业环境科学学报, 2018, 37(10): 2350-2358 [Wang Z-X, Chen S-R, Zhang F, et al. Effects of fresh and aged maize straw-derived biochars on ammonia volatilization in a calcareous arable soil. Journal of Agro-Environment Science, 2018, 37(10): 2350-2358] [55] Heitkötter J, Marschner B. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production. Geoderma, 2015, 17: 56-64 [56] Ghaffar A, Ghosh S, Li F, et al. Effect of biochar aging on surface characteristics and adsorption behavior of dialkyl phthalates. Environmental Pollution, 2015, 206: 502-509 [57] Huff MD, Lee JW. Biochar-surface oxygenation with hydrogen peroxide. Journal of Environmental Management, 2016, 165: 17-21 [58] Nguyen TTN, Xu CY, Tahmasbian I, et al. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma, 2017, 288: 79-96 [59] Lehmann J, Rillig MC, Thies J, et al. Biochar effects on soil biota: A review. Soil Biology and Biochemistry, 2011, 43: 1812-1836 [60] Hale SE, Alling V, Martinsen V, et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere, 2013, 91: 1612-1619 [61] Sumaraj, Padhye LP. Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water. Chemosphere, 2017, 184: 532-537 [62] Asada T, Ohkubo T, Kawata K, et al. Ammonia adsorption on bamboo charcoal with acid treatment. Journal of Health Science, 2006, 52: 585-589 [63] Armynah B, Atika, Djafar Z, et al. Analysis of chemical and physical properties of biochar from rice husk biomass. The 2nd International Conference on Science (ICOS) 2-3, Makassar, 2017: 2038-2046 [64] 杨选民, 王雅君, 邱凌, 等. 温度对生物质三组分热解制备生物炭理化特性的影响. 农业机械学报, 2017, 48(4): 284-290 [Yang X-M, Wang Y-J, Qiu L, et al. Effect of temperature on physicochemical pro-perties of biochar prepared by pyrolysis of three components of biomass. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 284-290 [65] Chintala R, Schumacher TE, Kumar S, et al. Molecular characterization of biochars and their influence on microbiological properties of soil. Journal of Hazardous Materials, 2014, 279: 244-256 [66] Gul S, Whalen JK, Thomas BW, et al. Physicochemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems and Environment, 2015, 206: 46-59 [67] 王峰, 陈玉真, 吴志丹, 等. 施用生物质炭对酸性茶园土壤氨挥发的影响. 茶叶科学, 2017, 37(1): 60-70 [Wang F, Chen Y-Z, Wu Z-D, et al. Effect of biochar addition on ammonia volatilization in acid tea garden. Journal of Tea Science, 2017, 37(1): 60-70] [68] Tan L, Ma Z, Yang KQ, et al. Effect of three artificial aging techniques on physicochemical properties and Pb adsorption capacities of different biochars. Science of the Total Environment, 2019, 699: 134223 [69] Freney JR, Simpson JR. Gaseous Loss of Nitrogen from Plant-soil Systems. Berlin: Springer, 1983: 33-64 [70] 高鹏程, 张一平. 氨挥发与土壤水分散失关系的研究. 西北农林科技大学学报: 自然科学版, 2001, 29(6): 22-26 [Gao P-C, Zhang Y-P. Research on relationship between volatilization of ammonia and evaporation of soil water. Journal of Northwest A&F University: Natural Science, 2001, 29(6): 22-26] [71] 刘红杰, 胡新, 任德超, 等. 生物炭对黄淮麦区土壤温度的影响. 农学学报, 2014, 4(9): 47-49 [Liu H-J, Hu X, Ren D-C, et al. The effect of biochar on soil temperature in Huanghuai wheat field. Journal of Agriculture, 2014, 4(9): 47-49] [72] Balabane M, Balesdent J. Medium-term transformations of organic N in a cultivated soil. European Journal of Soil Science, 1995, 46: 497-505 [73] Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry, 2009, 41: 1301-1310 [74] Bengtsson G, Bengtson P, Mansson KF. Gross nitrogen mineralization, immobilization and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biology and Biochemistry, 2003, 35: 143-154 [75] Tammeorg P, Simojoki A, Mada P, et al. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand. Agriculture, Ecosystems and Environment, 2014, 191: 108-116 [76] Lehmann J, Silva JPD, Steiner C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant and Soil, 2003, 249: 343-357 [77] 钟婷. 秸秆炭化还田对稻田土壤氨挥发的影响及其机理研究. 硕士论文. 杭州: 浙江大学, 2017 [Zhong T. Influence of Biochar Application on NH3 Volatilization from Paddy Soil. Master Thesis. Hangzhou: Zhejiang University, 2017] [78] Wu F, Jia Z, Wang S, et al. Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a chernozemic soil. Biology and Fertility of Soils, 2013, 49: 555-565 [79] He L, Shan J, Zhao X, et al. Variable responses of nitrification and denitrification in a paddy soil to long-term biochar amendment and short-term biochar addition. Chemosphere, 2019, 234: 558-567 [80] Cheng Y, Cai ZC, Chang SX, et al. Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem. Biology and Fertility of Soils, 2012, 48: 941-946 [81] 汪霞. 微生物菌剂对碱性土壤氨挥发的控制及其机理研究. 硕士论文. 合肥: 中国科学技术大学, 2017 [Wang X. The Effects and Mechanism of Biofertilizer on Mitigation the Ammonia Volatilization from the Alkaline Soil. Master Thesis. Hefei: University of Science and Technology of China, 2017] [82] Deluca TH, Mackenzie MD, Gundale MJ, et al. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Science Society of America Journal, 2006, 70: 448-453 |
[1] | 杨雪, 曹霞, 白冰, 袁艳娜, 张宁, 谢洋, 武春成. 根施生物炭对设施连作土壤氮素转化及黄瓜幼苗根系氮代谢的影响 [J]. 应用生态学报, 2024, 35(3): 713-720. |
[2] | 王世豪, 徐新良, 黄麟, 赵广. 1980s—2010s东北农田土壤养分时空变化特征 [J]. 应用生态学报, 2023, 34(4): 865-875. |
[3] | 宁川川, 陈悦桂, 柳瑞, 李彤欣, 陈海浪, 田纪辉, 蔡昆争. 减氮配施秸秆生物炭对双季稻产量和硅、氮营养的影响 [J]. 应用生态学报, 2023, 34(4): 993-1001. |
[4] | 韦金菊, 秦国兵, 张庚金, 贾露露, 周建, 吴建富, 魏宗强. 不同粒径生物炭对土壤磷吸附-解吸特性的影响 [J]. 应用生态学报, 2023, 34(3): 708-716. |
[5] | 陈森森, 任文杰, 滕应. 农田土壤氟磺胺草醚残留特征、生态风险与消减研究进展 [J]. 应用生态学报, 2023, 34(3): 815-824. |
[6] | 史多鹏, 叶子壮, 李惠通, 吕慎强, 王林权, 周春菊. 生物炭和氮肥配施对夏玉米-冬小麦轮作体系耕层土壤质量的影响 [J]. 应用生态学报, 2023, 34(2): 442-450. |
[7] | 高玮, 李子双, 谢建治, 周晓琳, 杜梦扬, 王学霞, 陈延华, 曹兵. 基施控释掺混肥对夏玉米生长期活性氮损失和碳氮足迹的影响 [J]. 应用生态学报, 2023, 34(12): 3322-3332. |
[8] | 项剑, 孙禧, 王成, 扎西央宗, 史文竹, 王艮梅, 张焕朝. 生物炭对滨海盐碱土氮素转化和N2O排放的影响 [J]. 应用生态学报, 2023, 34(11): 2969-2977. |
[9] | 邝曦芝, 邓伟明, 唐乐乐, 黄期, 蔡昆争, 田纪辉. 不同磷水平配施生物炭对土壤磷有效性 [J]. 应用生态学报, 2022, 33(7): 1911-1918. |
[10] | 胡旺, 赵杭, 周旋, 王艺哲, 张含丰, 张玉平. 施用南荻生物炭对不同类型土壤氨挥发的影响 [J]. 应用生态学报, 2022, 33(7): 1919-1926. |
[11] | 黄佳佳, 何莉莉, 刘玉学, 吕豪豪, 汪玉瑛, 陈照明, 陈金媛, 杨生茂. 生物炭配施硝化/脲酶抑制剂对亚热带水稻土活性氮气体排放的影响 [J]. 应用生态学报, 2022, 33(4): 1027-1036. |
[12] | 王玉洁, 唐宇嘉, 张亚平, 张妙月, 储双双, 仇荣亮. 生物炭对土壤中抗生素抗性基因的阻控潜力及机制研究进展 [J]. 应用生态学报, 2022, 33(11): 3116-3126. |
[13] | 刘兴, 武国慧, 张玉兰, 解宏图, 陈振华, 陈利军. 生物炭施用方式对黑土和潮棕壤养分及氮磷转化相关酶活性的影响 [J]. 应用生态学报, 2021, 32(8): 2693-2702. |
[14] | 高科, 郭宗昊, 薛晨, 高文慧, 刘远, 姜黎. 生物炭与炭基肥对采煤塌陷复垦区土壤硝化和反硝化微生物群落的影响 [J]. 应用生态学报, 2021, 32(8): 2949-2957. |
[15] | 段春健, 宛颂, 叶桂萍, 樊剑波, 王全成, 贺纪正, 林永新. 长期缺素施肥及石灰石膏施用对江西鹰潭红壤反硝化微生物功能基因丰度的影响 [J]. 应用生态学报, 2021, 32(6): 2209-2216. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||