[1] Jmo S, Hall D. The global carbon sink: A grassland perspective. Global Change Biology, 2010, 4: 229-233 [2] Yang Y, Wang Z, Li J, et al. Comparative assessment of grassland degradation dynamics in response to climate variation and human activities in China, Mongolia, Pakistan and Uzbekistan from 2000 to 2013. Journal of Arid Environments, 2016, 135: 164-172 [3] 穆少杰, 李建龙, 杨红飞, 等. 内蒙古草地生态系统近10年NPP时空变化及其与气候的关系. 草业学报, 2013, 22(3): 6-15 [Mu S-J, Li J-L, Yang H-F, et al. Spatio-temporal variation analysis of grassland net primary productivity and its relationship with climate over the past 10 years in Inner Mongolia. Acta Prataculturae Sinica, 2013, 22(3): 6-15] [4] Guo L, Cheng J, Luedeling E, et al. Critical climate periods for grassland productivity on China’s Loess Pla-teau. Agricultural and Forest Meteorology, 2017, 233: 101-109 [5] Hsu JS, Powell J, Adler PB. Sensitivity of mean annual primary production to precipitation. Global Change Bio-logy, 2012, 18: 2246-2255 [6] Sun Q, Miao C, Duan Q, et al. Temperature and precipitation changes over the Loess Plateau between 1961 and 2011, based on high-density gauge observations. Global and Planetary Change, 2015, 132: 1-10 [7] Wu D, Zhao X, Liang S, et al. Time-lag effects of global vegetation responses to climate change. Global Change Biology, 2015, 21: 3520-3531 [8] Yang Y, Shang S, Guan H, et al. A novel algorithm to assess gross primary production for terrestrial ecosystems from MODIS imagery. Journal of Geophysical Research: Biogeosciences, 2013, 118: 590-605 [9] Kimball JS, Zhao M, Mcdonald KC, et al. Satellite remote sensing of terrestrial net primary production for the Pan-Arctic Basin and Alaska. Mitigation and Adaptation Strategies for Global Change, 2006, 11: 783-804 [10] 欧阳玲, 马会瑶, 王宗明, 等. 气候变化与人类活动对内蒙古东部草地净初级生产力的影响. 生态学报, 2020, 40(19): 1-13 [Ouyang L, Ma H-Y, Wang Z-M, et al. Impact of climate change and human activities on net primary productivity of grassland in the eastern Inner Mongolia. Acta Ecologica Sinica, 2020, 40(19): 1-13] [11] 刘洋洋, 王倩, 杨悦, 等. 黄土高原草地净初级生产力时空动态及其影响因素. 应用生态学报, 2019, 30(7): 2309-2319 [Liu Y-Y, Wang Q, Yang Y, et al. Spatial-temporal dynamics of grassland NPP and its dri-ving factors in the Loess Plateau, China. Chinese Journal of Applied Ecology, 2019, 30(7): 2309-2319] [12] Sala OE, Gherardi LA, Reichmann L, et al. Legacies of precipitation fluctuations on primary production: Theory and data synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367: 3135-3144 [13] 田卫堂, 胡维银, 李军, 等. 我国水土流失现状和防治对策分析. 水土保持学报, 2008, 15(4): 204-209 [Tian W-T, Hu W-Y, Li J, et al. The statues of soil and water loess and analysis of countermeasures in China. Research of Soil and Water Conservation, 2008, 15(4): 204-209] [14] Bai Y, Wu J, Xing Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 2008, 89: 2140-2153 [15] Zhao G, Mu X, Wen Z, et al. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 2013, 24: 499-510 [16] Xin Z, Yu X, Li Q, et al. Spatiotemporal variation in rainfall erosivity on the Chinese Loess Plateau during the period 1956-2008. Regional Environmental Change, 2011, 11: 149-159 [17] Liang W, Yang Y, Fan D. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agricultural and Forest Meteorology, 2015, 204: 22-36 [18] 谢宝妮, 秦占飞, 王洋, 等, 黄土高原植被净初级生产力时空变化及其影响因素. 农业工程学报, 2014, 30(11): 244-253 [Xie B-N, Qin Z-F, Wang Y, et al. Spatial and temporal variation in terrestrial net primary productivity on Chinese Loess Plateau and its influential factors. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(11): 244-253] [19] Killick R, Eckley IA. Changepoint: An R package for changepoint analysis. Journal of Statistical Software, 2014, 58: 1-19 [20] Elith J, Leathwich JR, Hastie T. A working guide to boosted regression trees. Journal of Animal Ecology, 2008, 77: 802-813 [21] Feng X, Fu B, Lu N, et al. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China’s Loess Plateau. Scientific Reports, 2013, 3(1): 2846 [22] 孙艺杰, 刘宪锋, 任志远, 等. 1960—2016年黄土高原干旱和热浪时空变化特征. 地理科学进展, 2020, 39(4): 591-601 [Sun Y-J, Liu X-F, Ren Z-Y, et al. Spatiotemporal changes of droughts and heatwaves on the Loess Plateau during 1960-2016. Progress in Geo-graphy, 2020, 39(4): 591-601] [23] 程积民, 井赵斌, 金晶炜, 等. 黄土高原半干旱区退化草地恢复与利用过程研究. 中国科学:生命科学, 2014, 44(3): 267-279 [Cheng J-M, Jing Z-B, Jin J-W, et al. Restoration and utilization mechanism of degraded grassland in the semi-arid region of Loess Pla-teau. Scientia Sinica Vitae, 2014, 44(3): 267-279] [24] Hsu JS, Powell J, Adler PB. Sensitivity of mean annual primary production to precipitation. Global Change Bio-logy, 2012, 18: 2246-2255 [25] 王蕊, 姚治君, 刘兆飞. 西北干旱区气候和土地利用变化对水沙运移的影响——以小南川流域为例. 应用生态学报, 2018, 29(9): 2879-2889 [Wang R, Yao Z-J, Liu Z-F. Impacts of climate and land use change on water and sediment load in the Northwest arid region, China: With Xiaonanchuan River Basin as a case. Chinese Journal of Applied Ecology, 2018, 29(9): 2879-2889] [26] 秦格霞, 吴静, 李纯斌, 等. 中国北方草地植被物候变化及其对气候变化的响应. 应用生态学报, 2019, 30(12): 4099-4107 [Qin G-X, Wu J, Li C-B, et al. Grassland vegetation phenology change and its response to climate changes in North China. Chinese Journal of Applied Ecology, 2019, 30(12): 4099-4107] [27] 孙菊, 李秀珍, 王宪伟, 等. 大兴安岭冻土湿地植物群落结构的环境梯度分析. 植物生态学报, 2010, 34(10): 1165-1173 [Sun J, Li X-Z, Wang X-W, et al. Analysis of structures of permafrost wetland plant communities along environmental gradients in the Da Hinggan Mountains, China. Chinese Journal of Plant Ecology, 2010, 34(10): 1165-1173] [28] 王善举, 王秀芳, 王零. 黄土高原非植物生长季节水热状况与生态功能. 水土保持通报, 2017, 37(2): 284-288 [Wang S-J, Wang X-F, Wang L. Status and ecological functions of water and heat during non-growing perieod in Loess Plateau. Bulletin of Soil and Water Conservation, 2017, 37(2): 284-288] [29] 史晓亮, 杨志勇, 王馨爽. 黄土高原植被净初级生产力的时空变化及其与气候因子的关系. 中国农业气象, 2016, 37(4): 445-453 [Shi X-L, Yang Z-Y, Wang X-S, et al. Spatial and temporal variation of net primary productivity and its relationship with climate factors in the Chinese Loess Plateau. Chinese of Journal of Agrometeorology, 2016, 37(4): 445-453] [30] Li L, Zheng Z, Biederman JA, et al. Ecological responses to heavy rainfall depend on seasonal timing and multi-year recurrence. New Phytologist, 2019, 223: 647-660 [31] Yang J, Ding Y, Chen R. Spatial and temporal of variations of alpine vegetation cover in the source regions of the Yangtze and Yellow Rivers of the Tibetan Plateau from 1982 to 2001. Environmental Geology, 2006, 50: 313-322 [32] Sun W, Song X, Mu X, et al. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agricultural and Forest Meteorology, 2015, 209-210: 87-99 [33] Zheng H, Lin H, Zhou W. Revegetation has increased ecosystem water-use efficiency during 2000-2014 in the Chinese Loess Plateau: Evidence from satellite data. Ecological Indicators, 2019, 2: 507-517 [34] 王刚, 管东生. 植被覆盖度和归一化湿度指数对热力景观格局的影响——以广州为例. 应用生态学报, 2012, 23(9): 2429-2436 [Wang G, Guan D-S. Effects of vegetation cover and normalized difference moisture index on thermal landscape pattern: A case study of Guangzhou, South China. Chinese Journal of Applied Ecology, 2012, 23(9): 2429-2436] [35] 周伟刚, 成诚, 李建龙,等. 1982—2010年中国草地覆盖度的时空动态及其对气候变化的响应. 地理学报, 2014, 69(1): 15-30 [Zhou W-G, Cheng C, Li J-L, et al. Spatial-temporal dynamics of grassland cove-rage and its response to climate change in China during 1982-2010. Acta Geographica Sinica, 2014, 69(1): 15-30] |