[1] |
Zhou J, Wang YJ, Su BD, et al. Choice of potential evapotranspiration formulas influences drought assessment: A case study in China. Atmospheric Research, 2020, 242: 104979
|
[2] |
贺伟, 布仁仓, 熊在平, 等. 1961—2005年东北地区气温和降水变化趋势. 生态学报, 2013, 33(2): 519-531
|
[3] |
Yin Y, Wu S, Chen G, et al. Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theoretical and Applied Climatology, 2010, 101: 19-28
|
[4] |
李娜, 霍治国, 周晓宇, 等. 山西省参考作物蒸散量的时空变化特征. 应用生态学报, 2020, 31(10): 3489-3498
|
[5] |
Li Y, Yao N, Chau HW. Influences of removing linear and nonlinear trends from climatic variables on temporal variations of annual reference crop evapotranspiration in Xinjiang, China. Science of the Total Environment, 2017, 592: 680-692
|
[6] |
Xiang KY, Li Y, Horton R, et al. Similarity and diffe-rence of potential evapotranspiration and reference crop evapotranspiration: A review. Agricultural Water Mana-gement, 2020, 232: 106043
|
[7] |
王琼, 张明军, 潘淑坤, 等. 长江流域潜在蒸散量时空变化特征. 生态学杂志, 2013, 32(5): 1292-1302
|
[8] |
Maček U, Bezak N, Šraj M. Reference evapotranspiration changes in Slovenia, Europe. Agricultural and Forest Meteorology, 2018, 260: 183-192
|
[9] |
Pour SH, Abd Wahab AK, Shahid S, et al. Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmospheric Research, 2020, 246: 105096
|
[10] |
Salam R, Islam ARMT. Potential of RT. Bagging and RS ensemble learning algorithms for reference evapotranspiration prediction using climatic data-limited humid region in Bangladesh. Journal of Hydrology, 2020, 590: 125241
|
[11] |
张淑杰, 张玉书, 隋东, 等. 东北地区参考蒸散量的变化特征及其成因分析. 自然资源学报, 2010, 25(10): 1750-1761
|
[12] |
Han JY, Wang JH, Zhao Y, et al. Spatio-temporal varia-tion of potential evapotranspiration and climatic drivers in the Jing-Jin-Ji region, North China. Agricultural and Forest Meteorology, 2018, 256: 75-83
|
[13] |
韦振锋, 陈思源, 黄毅. 1981—2010年陕西潜在蒸散量时空特征及其对气候因子的响应. 地理科学, 2015, 35(8): 1033-1041
|
[14] |
卓玛兰草, 刘普幸, 张亚宁, 等. 甘肃黄土高原区潜在蒸散量时空变化与成因研究. 水土保持研究, 2012, 19(1): 70-75
|
[15] |
Li B, Chen F, Guo HD. Regional complexity in trends of potential evapotranspiration and its driving factors in the Upper Mekong River Basin. Quaternary International, 2015, 380: 83-94
|
[16] |
白爱娟, 假拉, 徐维新. 基于潜在蒸散量对青海湖流域干旱气候以及影响因素的分析. 干旱区地理, 2011, 34(6): 949-957
|
[17] |
钟巧, 焦黎, 李稚, 等. 博斯腾湖流域潜在蒸散发时空演变及归因分析. 干旱区地理, 2019, 42(1): 103-112
|
[18] |
董李勤, 章光新. 嫩江流域沼泽湿地景观变化及其水文驱动因素分析. 水科学进展, 2013, 24(2): 177-183
|
[19] |
Wang ZL, Zhang B, Zhang XZ, et al. Using MaxEnt model to guide marsh conservation in the Nenjiang River Basin, Northeast China. Chinese Geographical Science, 2019, 29: 962-973
|
[20] |
吴燕锋, 章光新, 齐鹏, 等. 耦合湿地模块的流域水文模型模拟效率评价. 水科学进展, 2019, 30(3): 326-336
|
[21] |
唐蕴, 王浩, 严登华, 等. 嫩江流域近45年来径流演变规律研究. 地理科学, 2009, 29(6): 864-868
|
[22] |
Wu YF, Zhang GX, Rousseau AN, et al. Quantifying streamflow regulation services of wetlands with an emphasis on quickflow and baseflow responses in the Upper Nenjiang River Basin, Northeast China. Journal of Hydrology, 2020, 583: 124565
|
[23] |
Yassen AN, Nam WH, Hong EM. Impact of climate change on reference evapotranspiration in Egypt. Catena, 2020, 194: 104711
|
[24] |
李鸿雁, 杨巍, 李峰平. 嫩江流域降水特征时空分布分析. 西北大学学报:自然科学版, 2020, 50(3): 427-437
|
[25] |
Um MJ, Kim Y, Park D, et al. Impacts of potential evapotranspiration on drought phenomena in different regions and climate zones. Science of the Total Environment, 2020, 703: 135590
|
[26] |
McCuen RH. A sensitivity and error analysis CF procedures used for estimating evaporation. Journal of the American Water Resources Association, 1974, 10: 486-497
|
[27] |
毕彦杰, 赵晶, 赵勇, 等. 京津冀地区潜在蒸散量时空演变特征及归因分析. 农业工程学报, 2020, 36(5): 130-140
|
[28] |
Yang Y, Chen R, Song Y, et al. Sensitivity of potential evapotranspiration to meteorological factors and their elevational gradients in the Qilian Mountains, northwestern China. Journal of Hydrology, 2019, 568: 147-159
|
[29] |
郭梦瑶, 佘敦先, 张利平, 等. 渭河流域潜在蒸散量变化的气候归因. 资源科学, 2020, 42(5): 907-919
|
[30] |
Li C, Wu PT, Li XL, et al. Spatial and temporal evolution of climatic factors and its impacts on potential eva-potranspiration in Loess Plateau of Northern Shaanxi, China. Science of the Total Environment, 2017, 589: 165-172
|
[31] |
张娜, 金建新, 佟长福, 等. 西藏参考作物蒸散量时空变化特征与影响因素. 干旱区研究, 2017, 34(5): 1027-1034
|
[32] |
Gao JB, Jiao KW, Wu SH. Investigating the spatially heterogeneous relationships between climate factors and NDVI in China during 1982 to 2013. Journal of Geographical Sciences, 2019, 29: 1597-1609
|
[33] |
李敏敏, 延军平. “蒸发悖论”在北方农牧交错带的探讨. 资源科学, 2013, 35(11): 2298-2307
|
[34] |
岳元, 申双和, 金宇, 等. “蒸发悖论”在吉林省的表现及成因分析. 生态学杂志, 2017, 36(7): 1993-2002
|
[35] |
鲁向晖, 白桦, 穆兴民, 等. 江西省潜在蒸发量变化规律及“蒸发悖论”成因分析. 生态与农村环境学报, 2016, 32(4): 552-557
|
[36] |
梁丽乔, 李丽娟, 张丽, 等. 松嫩平原西部生长季参考作物蒸散发的敏感性分析. 农业工程学报, 2008, 24(5): 1-5
|
[37] |
李英杰, 延军平, 王鹏涛. 北方农牧交错带参考作物蒸散量时空变化与成因分析. 中国农业气象, 2016, 37(2): 166-173
|
[38] |
王鹏涛, 延军平, 蒋冲, 等. 华北平原参考作物蒸散量时空变化及其影响因素分析. 生态学报, 2014, 34(19): 5589-5599
|
[39] |
刘玉汐, 任景全, 王冬妮, 等. 吉林省参考作物蒸散量时空分布及成因分析. 生态环境学报, 2019, 28(11): 2208-2215
|
[40] |
赵璐, 梁川. 近50年来四川省潜在蒸散量变化成因研究. 水土保持研究, 2014, 21(4): 26-30
|