[1] 杨邦杰. 土壤斥水性引起的土地退化、调查方法与改良措施研究. 环境科学, 1994, 15(4): 88-90 [2] Doerr SH, Ferreira AJD, Walsh RPD, et al. Soil water repellency as a potential parameter in rainfall-runoff modelling: Experimental evidence at point to catchment scales from Portugal. Hydrological Processes, 2003, 17: 363-377 [3] 闵雷雷, 于静洁. 土壤斥水性及其对坡面产流的影响研究进展. 地理科学进展, 2010, 29(7): 855-860 [4] 倪世民, 杨伟, 王杰, 等. 不同类型土壤团聚体斥水性及其对溅蚀的影响. 水土保持学报, 2018, 32(1): 167-173 [5] Braun B, Böckelmann U, Grohmann E, et al. Bacterial soil communities affected by water-repellency. Geoderma, 2010, 158: 343-351 [6] 李晓丽, 申向东. 结皮土壤的抗风蚀性分析. 干旱区资源与环境, 2006, 20(2): 203-207 [7] Singer MJ. Physical properties of arid region soils// Skujins J, ed. Semiarid Lands and Deserts: Soils Resource and Reclamation. New York: M. Dekker Inc., 1991: 81-109 [8] Eldridge D, Greene R. Microbiotic soil crusts: A review of their roles in soil and ecological processes in the rangelands of Australia. Australian Journal of Soil Research, 1994, 32: 389-415 [9] Belnap J, Weber B, Büdel B. Biological soil crusts as an organizing principle in drylands// Weber B, Buedel B, Belnap J, eds. Biological Soil Crusts: An Organizing Principle in Drylands. Berlin: Springer-Verlag, 2016: 3-13 [10] 吴发启, 范文波. 土壤结皮对降雨入渗和产流产沙的影响. 中国水土保持科学, 2005, 3(2): 97-101 [11] 吴秋菊, 吴佳, 王林华, 等. 黄土区坡耕地土壤结皮对入渗的影响. 土壤学报, 2015, 52(2): 303-311 [12] 贾志军, 王小平. 黄土表面结皮对夏闲坡耕地土壤水分的影响研究. 中国水土保持, 2002(9): 18-19 [13] 卫伟, 温智, 陈利顶, 等. 半干旱黄土丘陵区土壤结皮的地表水文效应. 环境科学, 2012, 33(11): 3901-3904 [14] 张思琪, 张科利, 曹梓豪, 等. 喀斯特坡面生物结皮发育特征及其对土壤水分入渗的影响. 应用生态学报, 2021, 32(8): 2875-2885 [15] 张侃侃, 卜崇峰, 高国雄. 黄土高原生物结皮对土壤水分入渗的影响. 干旱区研究, 2011, 28(5): 808-812 [16] 刘翔, 周宏飞, 刘昊, 等. 不同类型生物土壤结皮覆盖下风沙土的入渗特征及模拟. 生态学报, 2016, 36(18): 5820-5826 [17] 孙福海, 肖波, 张鑫鑫, 等. 黄土高原生物结皮覆盖对土壤积水入渗特征的影响及其模型模拟. 西北农林科技大学学报: 自然科学版, 2020, 48(10): 82-91 [18] 张培培, 赵允格, 王媛, 等. 黄土高原丘陵区生物结皮土壤的斥水性. 应用生态学报, 2014, 25(3): 657-663 [19] 吕贻忠, 于雅琼, 高原. 鄂尔多斯沙地土壤生物结皮物理特性研究. 中国土壤学会第十一届全国会员代表大会暨第七届海峡两岸土壤肥料学术交流研讨会论文集(中), 北京, 2008: 46-50 [20] 朱磊, 尤今, 陈玖泓. 裂隙网络对坡面流及土壤水分入渗影响. 灌溉排水学报, 2017, 36(12): 95-100 [21] Lozano-Baez SE, Cooper M, de Barros Ferraz SF, et al. Assessing water infiltration and soil water repellency in Brazilian Atlantic forest soils. Applied Sciences, 2020, 10(6): 1950 [22] Doerr SH. On standardizing the ‘water drop penetration time’ and the ‘molarity of an ethanol droplet’ techniques to classify soil hydrophobicity: A case study using medium textured soils. Earth Surface Processes and Landforms, 1998, 23: 663-668 [23] Dekker LW, Ritsema CJ. How water moves in a water repellent sandy soil. 1. Potential and actual water repellency. Water Resources Research, 1994, 30: 2507-2517 [24] Hallett PD, Young IM. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. European Journal of Soil Science, 1999, 50: 35-40 [25] Philip JR. The theory of infiltration. 1. The infiltration equation and its solution. Soil Science, 1957, 83: 345-358 [26] Lichner L, Hallett PD, Drongová Z, et al. Algae influence the hydrophysical parameters of a sandy soil. Catena, 2013, 108: 58-68 [27] Chen Y, Tarchitzky J, Brouwer J, et al. Scanning electron microscope observations on soil crusts and their formation. Soil Science, 1980, 130: 49-55 [28] 胡霞, 严平, 李顺江, 等. 人工降雨条件下土壤结皮的形成以及与土壤溅蚀的关系. 水土保持学报, 2005, 19(2): 13-16 [29] Doerr SH, Shakesby RA, Walsh R. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 2000, 51: 33-65 [30] 郭成久, 陈乐, 肖波, 等. 黄土高原苔藓结皮斥水性及其对火烧时间的响应. 沈阳农业大学学报, 2016, 47(2): 212-217 [31] 李金涛, 刘文杰, 卢洪健. 土壤斥水性研究进展. 西南林学院学报, 2010, 30(5): 82-87, 94 [32] 李毅, 商艳玲, 李振华, 等. 土壤斥水性研究进展. 农业机械学报, 2012, 43(1): 68-75 [33] Fischer T, Veste M, Wiehe W, et al. Water repellency and pore clogging at early successional stages of microbio-tic crusts on inland dunes, Brandenburg, NE Germany. Catena, 2010, 80: 47-52 |