[1] Bu CF, Wu SF, Xie YS, et al. The study of biological soil crusts: Hotspots and prospects. Clean-Soil Air Water, 2013, 41: 899-906 [2] 李新荣, 张元明, 赵允格. 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 2009, 24(1): 11-24 [3] 漆婧华, 刘玉冰, 李新荣, 等. 沙坡头地区地衣和藓类结皮丛枝菌根真菌多样性研究. 土壤学报, 2020, 57(4): 986-994 [4] Belnap J. Surface disturbances: Their role in accelerating desertification. Environmental Monitoring and Assessment, 1995, 37: 39-57 [5] Rodriguez-Caballero E, Belnap J, Büdel B, et al. Dryland photoautotrophic soil surface communities endangered by global change. Nature Geoscience, 2018, 11: 185-189 [6] 张元明, 王雪芹. 荒漠地表生物土壤结皮形成与演替特征概述. 生态学报, 2010, 30(16): 4484-4492 [7] Su YG, Chen YW, Padilla FM, et al. The influence of biocrusts on the spatial pattern of soil bacterial communities: A case study at landscape and slope scales. Soil Biology and Biochemistry, 2020, 142: 107721 [8] 贾子毅, 吴波, 卢琦. 干旱半干旱区生物土壤结皮光合固碳研究进展. 安徽农业科学, 2011, 39(21): 12768-12770, 12833 [9] Housman DC, Powers HH, Collins AD, et al. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. Journal of Arid Environments, 2006, 66: 620-634 [10] 胡宜刚, 冯玉兰, 张志山, 等. 沙坡头人工植被固沙区生物结皮-土壤系统温室气体通量特征. 应用生态学报, 2014, 25(1): 61-68 [11] Elbert W, Weber B, Burrows S, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience, 2012, 5: 459-462 [12] Gao S, Ye X, Chu Y, et al. Effects of biological soil crusts on profile distribution of soil water, organic carbon and total nitrogen in Mu Us Sandland, China. Journal of Plant Ecology, 2010, 3: 279-284 [13] 杨巧云, 赵允格, 包天莉, 等. 黄土丘陵区不同类型生物结皮下的土壤生态化学计量特征. 应用生态学报, 2019, 30(8): 2699-2706 [14] 党晓宏, 刘阳, 蒙仲举, 等. 风沙采煤沉陷区地表生物结皮土壤碳排放对水热因子变化的响应. 煤炭学报, 2021, 46(5): 1498-1507 [15] 吴林, 苏延桂, 张元明. 模拟降水对古尔班通古特沙漠生物结皮表观土壤碳通量的影响. 生态学报, 2012, 32(13): 4103-4113 [16] 刘娟, 刘华民, 卓义, 等. 毛乌素沙地1990—2014年景观格局变化及驱动力. 草业科学, 2017, 34(2): 255-263 [17] 白雪强, 田畅, 李亚红, 等. 外源添加物对沙地苔藓结皮扩繁发育的促进作用. 水土保持学报, 2020, 34(6): 172-177, 184 [18] Abatzoglou JT, Dobrowski SZ, Parks SA, et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 2018, 5: 170191 [19] Tomislav H, Jorge MDJ, Heuvelink GBM, et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One, 2017, 12(2): e0169748 [20] O’Kelly BC. Accurate determination of moisture content of organic soils using the oven drying method. Drying Technology, 2004, 22: 1767-1776 [21] Thomas GW. Soil pH and soil acidity// Sparks DL, ed. Methods of Soil Analysis. Part 3. Chemical Methods. Madison, WI, USA: ASA-SSSA, 1996: 475-490 [22] Garten CT, Post WM, Hanson PJ, et al. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains. Biogeochemistry, 1999, 45: 115-145 [23] 胡尧, 侯雨乐, 李懿. 红壤生物结皮对土壤侵蚀及养分的影响. 贵州农业科学, 2015, 43(5): 114-119 [24] 宋阳, 严平, 张宏, 等. 荒漠生物结皮研究中的几个问题. 干旱区研究, 2004, 21(4): 439-443 [25] 吴楠, 潘伯荣, 张元明. 土壤微生物在生物结皮形成中的作用及生态学意义. 干旱区研究, 2004, 21(4): 444-450 [26] 黄磊, 张志山, 潘颜霞, 等. 荒漠人工植被区典型生物土壤结皮的固碳模型研究. 中国沙漠, 2013, 33(6): 1796-1802 [27] 刘艳梅, 李新荣, 何明珠, 等. 生物土壤结皮对土壤微生物量碳的影响. 中国沙漠, 2012, 32(3): 669-673 [28] Garcia PF, Belnap J. Microenvironments and microscale productivity of desert crusts. Journal of Phycology, 1996, 32: 774-782 [29] Belnap J, Lange OL. Biological Soil Crusts: Structure, Function, and Management. Berlin: Springer, 2003 [30] 韦应欣, 周利军, 卜崇峰, 等. 两类典型荒漠生物结皮覆盖土壤碳通量月变化特征及其影响因子. 水土保持研究, 2021, 28(6): 153-161 [31] Persson HA, Stadenberg I. Fine root dynamics in a Norway spruce forest (Picea abies (L.) Karst) in eastern Sweden. Plant and Soil, 2010, 330: 329-344 [32] 吴玉环, 黄国宏, 高谦, 等. 苔藓植物对环境变化的响应及适应性研究进展. 应用生态学报, 2001, 12(6): 943-946 [33] 许书军. 典型荒漠苔藓人工繁殖特征与抗御干热环境胁迫的生理生化机制研究. 博士论文. 上海: 上海交通大学, 2007 [34] Escolar C, Maestre FT, Rey A. Biocrusts modulate warming and rainfall exclusion effects on soil respiration in a semi-arid grassland. Soil Biology and Biochemistry, 2015, 80: 9-17 [35] 吴旭东. 沙漠化对草地植物群落演替及土壤有机碳稳定性的影响. 博士论文. 银川: 宁夏大学, 2016 [36] 杨永胜, 冯伟, 袁方, 等. 快速培育黄土高原苔藓结皮的关键影响因子. 水土保持学报, 2015, 29(4): 289-294, 299 [37] 郭琦, 卜崇峰, 李宜坪, 等. 区域尺度生物结皮下伏土壤养分的空间分布特征——以毛乌素沙地为例. 土壤学报, 2022, 59(3): 699-708 [38] 王爱平, 刘娟, 刘美利. 关于神木县退耕还林还草工程实施情况现状调查及探讨. 农民致富之友, 2015(10): 142-143 [39] 陈晓江, 杨劼, 呼格吉勒图, 等. 退耕还林(草)政策对伊金霍洛旗土地利用/覆被变化影响的研究. 内蒙古大学学报: 自然科学版, 2016, 47(5): 542-548 [40] 杨雪芹, 许明祥, 赵允格, 等. 黄土丘陵区踩踏干扰对生物土壤结皮有机碳组分及碳矿化潜力的影响. 应用生态学报, 2018, 29(4): 1283-1290 [41] Thomas AD, Hoon SR, Linton PE. Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari. Applied Soil Ecology, 2008, 39: 254-263 [42] Belnap J, Phillips SL, Smith SD. Dynamics of cover, UV-protective pigments, and quantum yield in biological soil crust communities of an undisturbed Mojave Desert shrubland. Flora, 2007, 202: 674-686 [43] Grote EE, Belnap J, Housman DC, et al. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: Implications for global change. Global Change Biology, 2010, 16: 2763-2774 [44] 王晓丽, 王媛, 石洪水华, 等. 南长山岛不同土地利用方式下的土壤有机碳密度. 环境科学学报, 2014, 34(4): 1009-1015 |