
应用生态学报 ›› 2021, Vol. 32 ›› Issue (11): 4107-4118.doi: 10.13287/j.1001-9332.202111.036
樊瑾1,李诗瑶1,杜雅仙2,王融融1,余海龙1*,黄菊莹3
出版日期:2021-11-15
发布日期:2022-05-15
通讯作者:
*E-mail: yhl@nxu.edu.cn
作者简介:樊瑾, 女, 1996年生, 硕士研究生。主要从事荒漠化与水土保持研究。E-mail:fanlying1@163.com
基金资助:FAN Jin1, LI Shi-yao1, DU Ya-xian2, WANG Rong-rong1, YU Hai-long1*, HUANG Ju-ying3
Online:2021-11-15
Published:2022-05-15
Supported by:摘要: 为探究大气降尘重金属污染对矿区周边不同类型生物结皮细菌群落结构的影响,利用高通量测序技术分析位于宁东能源化工基地典型火电厂周边的3类生物结皮(藻结皮ZB、混生结皮HB、苔藓结皮TB)和对照(CK,裸土)的细菌丰度和群落结构,并探讨了影响细菌群落结构的环境因子。结果表明: 不同类型生物结皮的理化性质和重金属含量存在差异,且由于生物结皮对大气降尘重金属的富集作用造成各类结皮均达重度污染级别。在相对丰度排名前10的优势细菌门中,芽单胞菌门、蓝细菌门在不同类型生物结皮之间差异显著。细菌群落α多样性由高到低排序依次为CK>TB>HB>ZB。非度量多维排序(NMDS)结果显示,裸土细菌群落与其他3种生物结皮存在明显差异。相关性分析表明,生物结皮演替对细菌群落组成具有显著影响,细菌多样性和组成与pH、养分、重金属含量等密切相关。放线菌门、绿弯菌门相对丰度与pH值呈显著正相关关系,而与全氮(TN)、全磷(TP)、Pb、Zn、Cd均呈显著负相关关系;冗余分析结果表明,TN、pH、TP、有机碳(SOC)是影响3种生物结皮细菌群落α多样性以及一些优势菌群相对丰度的主要土壤环境因子,而重金属Pb、Zn、Cd是影响细菌群落结构的主要重金属元素,对细菌群落数量和多样性有抑制或刺激作用。说明pH、重金属和养分是影响结皮细菌群落组成的关键因子。总体而言,长期的重金属富集作用会对生物结皮的细菌多样性和群落组成产生影响。
樊瑾,李诗瑶,杜雅仙,王融融,余海龙,黄菊莹. 火电厂周边不同生物结皮细菌群落特征差异及其影响因素[J]. 应用生态学报, 2021, 32(11): 4107-4118.
FAN Jin, LI Shi-yao, DU Ya-xian, WANG Rong-rong, YU Hai-long, HUANG Ju-ying. Differences of bacterial communities in different biological soil crusts around thermal power plant and their influencing factors[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 4107-4118.
| [1] | Li XR, Zhou HY, Wang XP, et al. The effects of re-vegetation oil cryptogam species diversity in Tengger Desert, Northern China. Plant and Soil, 2003, 251: 237-245 |
| [2] | Danin A, Bar-Or Y, Dor I, et al. The role of cyanobacteria in stabilization of sand dunes in Southern Israel. Ecologia Mediterranea, 1989, 15: 55-64 |
| [3] | Acea MJ, Prieto-Fernández A, Diz-Cid N. Cyanobacterial inoculation of heated soils: Effect on microorganisms of C and N cycles and on chemical composition in soil surface. Soil Biology and Biochemistry, 2003, 35: 513-524 |
| [4] | Su YG, Li XR, Zheng JG, et al. The effect of biological soil crusts of different successional stages and conditions on the germination of seeds of three desert plants. Journal of Arid Environments, 2009, 73: 931-936 |
| [5] | Wang Z, Yao L, Liu G, et al. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China. Ecotoxicology and Environmental Safety, 2014, 107: 200-206 |
| [6] | Lucaciui A, Culicov O, Timofte L, et al. Atmospheric deposition of trace elements in romania studied by the moss biomonitoring technique. Journal Atmospheric Chemistry, 2004, 49: 533-548 |
| [7] | 曹同, 路勇, 吴玉环, 等. 苔藓植物对鞍山市环境污染生物指示的研究. 应用生态学报, 1998, 9(6): 635-639 [Cao T, Lu Y, Wu Y-H, et al. Bio-indication of bryophytes to environmental pollution in Anshan City. Chinese Journal of Applied Ecology, 1998, 9(6): 635-639] |
| [8] | 徐杰, 敖艳青, 张璟霞, 等. 沙地不同发育阶段的人工生物结皮对重金属的富集作用. 生态学报, 2012, 32(23): 7402-7410 [Xu J, Ao Y-Q, Zhang J-X, et al. Heavy metal contaminant in development process of artificial biological soil crusts in sand-land. Acta Ecologica Sinica, 2012, 32(23): 7402-7410] |
| [9] | 陈兆进, 李英军, 邵洋, 等. 新乡市镉污染土壤细菌群落组成及其对镉固定效果. 环境科学, 2020, 41(6): 2889-2897 [Chen Z-J, Li Y-J, Shao Y, et al. Bacterial community composition in cadmium-contaminated soils in Xinxiang City and its ability to reduce cadmium bioaccumulation in pak choi (Brassica chinensis L.). Environmental Science, 2020, 41(6): 2889-2897] |
| [10] | Bartkowiak A, Lemanowicz J. Application of biochemical tests to evaluate the pollution of the Unislaw basin soils with heavy metals. International Journal of Environmental Research, 2014, 8: 93-100 |
| [11] | 马永强, 石云, 郝姗姗, 等. 宁东能源化工基地土地变化及其对生境质量的影响. 兰州大学学报: 自然科学版, 2020, 56(1): 118-124 [Ma Y-Q, Shi Y, Hao S-S, et al. Assessment on land transfer and habitat quality in Ningdong energy and chemical industry base. Journal of Lanzhou University: Natural Sciences, 2020, 56(1): 118-124] |
| [12] | 曹人升, 范明毅, 黄先飞, 等. 金沙燃煤电厂周围土壤有机质与重金属分析. 环境化学, 2017, 36(2):397-407 [Cao R-S, Fan M-Y, Huang X-F, et al. Analysis of organic matter and heavy metals in soils around the coal-fired power plant in Jinsha. Environmental Chemistry, 2017, 36(2): 397-407] |
| [13] | 智静, 傅泽强, 陈燕, 等. 宁东能源(煤)化工基地物质流分析. 干旱区资源与环境, 2012, 26(9): 137-142 [Zhi J, Fu Z-Q, Chen Y, et al. Analysis of material metabolism for coal chemical industry base: A case of Ningdong. Journal of Arid Land Resources and Environment, 2012, 26(9): 137-142] |
| [14] | 游芳, 甘定宇, 许云海, 等. 南方某铅锌锰冶炼区周边大气降尘重金属污染水平及风险评价. 环境污染与防治, 2019, 41(12): 1444-1450 [You F, Gan D-Y, Xu Y-H, et al. Pollution level and risk assessment of heavy metals in the atmospheric dustfall around a lead-zinc-manganese smelting area in south China. Environmental Pollution & Control, 2019, 41(12): 1444-1450] |
| [15] | 王秀丽, 徐建民, 姚槐应, 等. 重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响. 环境科学学报, 2003, 23(1): 22-27 [Wang X-L, Xu J-M, Yao H-Y, et al. Effects of Cu, Zn, Cd and Pb compound contamination on soil microbial community. Acta Scientiae Circumstantiae, 2003, 23(1): 22-27] |
| [16] | Chodak M, Gotqbiewski M, Morawska-Ptoskonka J, et al. Diversity of microorganisms from forest soils diffe-rently polluted with heavy metals. Applied Soil Ecology, 2013, 64: 7-14 |
| [17] | Jiang J, Wu L, Li N, et al. Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. European Journal of Soil Biology, 2010, 46: 18-26 |
| [18] | 牛玉斌, 樊瑾, 李诗瑶, 等. 宁东能源工业基地表层土壤粒径分布、养分、重金属含量与大气降尘的关联性. 水土保持通报, 2020, 40(4): 91-99 [Niu Y-B, Fan J, Li S-Y, et al. Correlation between particle size distribution, nutrient and heavy metals content of topsoil in Ningdong energy industrial base and atmospheric dustfall. Bulletin of Soil and Water Conservation, 2020, 40(4): 91-99] |
| [19] | 杨巧云, 赵允格, 包天莉, 等. 黄土丘陵区不同类型生物结皮的土壤生态化学计量学特征. 应用生态学报, 2019, 30(8): 2699-2706 [Yang Q-Y, Zhao Y-G, Bao T-L, et al. Soil ecological stoichiometry characteristics under different types of biological soil crusts in the hilly Loess Plateau region, China. Chinese Journal of Applied Ecology, 2019, 30(8): 2699-2706] |
| [20] | 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000 [Bao S-D. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000] |
| [21] | 白晓旭, 史荣久, 尤业明. 河南宝天曼不同林龄与林型森林土壤的细菌群落结构与多样性. 应用生态学报, 2015, 26(8): 2273 -2281 [Bai X-X, Shi R-J, You Y-M, et al. Bacterial community structure and diversity in soils of different forest ages and types in Baotianman forest, Henan Province, China. Chinese Journal of Applied Ecology, 2015, 26(8): 2273-2281] |
| [22] | 方晓波, 史坚, 廖欣峰, 等. 临安市雷竹林土壤重金属污染特征及生态风险评价. 应用生态学报, 2015, 26(6): 1883-1891 [Fang X-B, Shi J, Liao X-F, et al. Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin’an. Chinese Journal of Applied Ecology, 2015, 26(6): 1883-1891] |
| [23] | 中国环境监测总站. 中国土壤元素背景值. 北京: 中国环境科学出版社, 1990 [China National Environmental Monitoring Centre. Background Values of Soil Elements in China. Beijing: China Environmental Science Press, 1990] |
| [24] | Shrestha RK, Lal R. Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio, USA. Geoderma, 2010, 157: 196-205 |
| [25] | 籍霞. 几种藓类植物对重金属胁迫的响应研究. 硕士论文. 曲阜: 曲阜师范大学, 2010 [Ji X. Studies on the Response of Several Mosses to Heavy Metal Stress. Master Thesis. Qufu: Qufu Normal Univeristy, 2010] |
| [26] | 靳新影, 张肖冲, 金多, 等. 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征. 生物多样性, 2020, 28(6): 718-726 [Jin X-Y, Zhang X-C, Jin D, et al. Diversity and seasonal dynamics of bacteria among different biological soil crusts in the southeast Tengger Desert. Biodiversity Science, 2020, 28(6): 718-726] |
| [27] | Nacke H, Thürmer A, Wollherr A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One, 2011, 6(2), doi: 10.1371/journal.pone.0017000 |
| [28] | Yuan YL, Si GC, Wang J, et al. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau. FEMS Microbiology Ecology, 2014, 87: 121-132 |
| [29] | 刘玉冰, 王增如, 高天鹏. 温带荒漠生物土壤结皮微生物群落结构与功能演替研究综述. 微生物学通报, 2020, 47(9): 2974-2983 [Liu Y-B, Wang Z-R, Gao T-P. Succession of microbial community structure and their functions of biological soil crusts in temperate de-sert: A review. Microbiology China, 2020, 47(9): 2974-2983] |
| [30] | Drees KP, Neilson JW, Betancourt JL, et al. Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Applied and Environmental Microbio-logy, 2007, 72: 7902-7908 |
| [31] | Liu LC, Liu YB, Zhang P, et al. Development of bacterial communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert, Northwest China. Biogeosciences, 2017, 14: 1-25 |
| [32] | Concostrina-Zubiri L, Huber-Sannwald E, Martinez I, et al. Biological soil crusts greatly contribute to small-scale soil heterogeneity along a grazing gradient. Soil Biology and Biochemistry, 2013, 64: 28-36 |
| [33] | 高天鹏, 万子栋, 付靖雯, 等. 重金属污染对金川矿区原生植物根际细菌群落的影响. 兰州大学学报: 自然科学版, 2020, 56(4): 493-501 [Gao T-P, Wan Z-D, Fu J-W, et al. Effects of heavy metal pollution on rhizosphere bacterial community of autochthonous plants in Jinchuan mining area. Journal of Lanzhou University: Natural Sciences, 2020, 56(4): 493-501] |
| [34] | Zhang R, Chen LJ, Niu ZR, et al. Water stress affects the frequency of Firmicutes, Clostridialesand Lysobacter in rhizosphere soils of greenhouse grape. Agricultural Water Management, 2019, 226: 105776-105784 |
| [35] | Zhao LN, Liu YB, Yuan SW, et al. Development of archaeal communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert, north central China. Soil and Tillage Research, 2020, 196: 104443 |
| [36] | Shao PS, Liang C, Rubert-Nason K, et al. Secondary successional forests undergo tightly-coupled changes in soil microbial community structure and soil organic matter. Soil Biology and Biochemistry, 2019, 128: 56-65 |
| [37] | Tripathi BM, Stegen JC, Kim M, et al. Soil pH media-tes the balance between stochastic and deterministic assembly of bacteria. The ISME Journal, 2018, 12: 1072-1083 |
| [38] | Tian J, He N, Hale L, et al. Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold-temperate forests. Functional Ecology, 2018, 32: 61-70 |
| [39] | Li X, Meng D, Li J, et al. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination. Environmental Pollution, 2017, 231: 908-917 |
| [40] | Bi YL, Zhang YX, Zou H. Plant growth and their root development after inoculation of arbuscular mycorrhizal fungi in coal mine subsided areas. International Journal of Coal Science Technology, 2018, 5: 47-53 |
| [41] | 邢奕, 司艳晓, 洪晨, 等. 铁矿区重金属污染对土壤微生物群落变化的影响. 环境科学研究, 2013, 26(11): 1201-1211 [Xing Y, Si Y-X, Hong C, et al. Impact of long-term heavy metal pollution on microbial community in iron mine soil. Research of Environmental Sciences, 2013, 26(11): 1201-1211] |
| [42] | Patel KS, Sharma R, Dahariya NS, et al. Black carbon and heavy metal contamination of soil. Polish Journal of Environmental Studies, 2016, 25: 717-724 |
| [43] | Epelde L, Lanzén A, Blanco F, et al. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine. FEMS Microbiology Ecology, 2015, 91: 1-11 |
| [44] | Zhang C, Nie S, Liang J, et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Science of the Total Environment, 2016, 557/558: 785-790 |
| [45] | 滕应, 黄昌勇, 骆永明, 等. 重金属复合污染下红壤微生物活性及其群落结构的变化. 土壤学报, 2005, 42(5): 819-828 [Teng Y, Huang C-Y, Luo Y-M, et al. Changes in microbial activities and its community structure of red earths polluted with mixed heavy metals. Acta Pedologica Sinica, 2005, 42(5): 819-828] |
| [46] | He HD, Li WC, Yu RQ, et al. Illumina-based analysis of bulk and rhizosphere soil bacterial communities in paddy fields under mixed heavy metal contamination. Pedosphere, 2017, 27: 569-578 |
| [47] | 陈静, 刘荣辉, 陈岩贽, 等. 重金属污染对土壤微生物生态的影响. 生命科学, 2018, 30(6): 667-672 [Chen J, Liu R-H, Chen Y-Z, et al. Effect of heavy metal pollution on soil microbial ecology. Chinese Bulletin of Life Sciences, 2018, 30(6): 667-672] |
| [1] | 赵允格, 吉静怡, 张万涛, 明姣, 黄琬雲, 高丽倩. 黄土高原生物土壤结皮分布时空分异特征 [J]. 应用生态学报, 2024, 35(3): 739-748. |
| [2] | 李菁, 张小飞, 张惠雯, 文嘉庆, 张焱, 徐玲玲. 盐胁迫对白及根际细菌群落组成及多样性的影响 [J]. 应用生态学报, 2024, 35(1): 219-228. |
| [3] | 黄庆阳, 谢立红, 曹宏杰, 王立民, 杨帆, 王继丰, 刘赢男, 倪红伟. 细菌对五大连池火山森林凋落物早期分解的影响 [J]. 应用生态学报, 2023, 34(7): 1941-1948. |
| [4] | 郭蓉, 吴旭东, 王占军, 蒋齐, 俞鸿千, 贺婧, 刘文娟, 马琨. 荒漠草原土壤细菌和真菌群落对降水变化的响应 [J]. 应用生态学报, 2023, 34(6): 1500-1508. |
| [5] | 明姣, 杨光, 赵允格, 马昕昕, 孙会, 乔羽. 放牧对降雨条件下黄土高原退耕草地土壤水分补给的影响 [J]. 应用生态学报, 2023, 34(6): 1555-1562. |
| [6] | 江尚焘, 栗晗, 彭海英, 梅新兰, 陈廷速, 徐阳春, 董彩霞, 沈其荣. 有机肥替代部分化肥对芒果丛枝菌根真菌群落的影响 [J]. 应用生态学报, 2023, 34(2): 481-490. |
| [7] | 刘艳娇, 刘庆, 贺合亮, 赵文强, 寇涌苹. 亚高山粗枝云杉人工林土壤原核微生物群落结构与功能变化 [J]. 应用生态学报, 2023, 34(12): 3279-3290. |
| [8] | 邵亚军, 王丽燕, 谭云燕, 冷鹏, 王建青, 许敬华, 施秀珍. 亚热带常见造林树种对土壤细菌及微生物功能群的影响 [J]. 应用生态学报, 2023, 34(1): 235-241. |
| [9] | 王星, 杨腾, 毛子昆, 蔺菲, 叶吉, 房帅, 戴冠华, 胡家瑞, 郝占庆, 王绪高, 原作强. 长白山阔叶红松林优势树种叶际真菌群落结构 [J]. 应用生态学报, 2022, 33(9): 2405-2412. |
| [10] | 高慧芳, 孟婷, 熊琦, 章鸿宇, 邱君志, 林文雄, 张燎原. 太子参不同休耕年限土壤理化特征和微生物群落变化 [J]. 应用生态学报, 2022, 33(8): 2196-2204. |
| [11] | 郭玥微, 赵允格, 钱煦坤, 万杨卓群, 王闪闪. 黄土高原三种耐干藓营养繁殖的季节差异及机理 [J]. 应用生态学报, 2022, 33(7): 1738-1746. |
| [12] | 庞景文, 卜崇峰, 郭琦, 鞠孟辰, 江熳, 莫秋霞, 王鹤鸣. 毛乌素沙地区域尺度生物结皮有机碳 [J]. 应用生态学报, 2022, 33(7): 1755-1763. |
| [13] | 江熳, 卜崇峰, 郭琦, 鞠孟辰, 庞景文, 莫秋霞, 王鹤鸣. 不同降水条件下生物结皮覆盖对沙地土壤有机碳的影响 [J]. 应用生态学报, 2022, 33(7): 1764-1772. |
| [14] | 张冠华, 易亮, 孙宝洋, 李建明, 沈盛彧. 亚热带苔藓结皮对土壤-微生物-胞外酶化学计量特征的影响 [J]. 应用生态学报, 2022, 33(7): 1791-1800. |
| [15] | 刘哲, 叶兴旺, 王吉平, 程永韬, 钱隆, 肖敬尚, 吴丽. 生物结皮胞外多糖理化特性及菌群结构的季节动态 [J]. 应用生态学报, 2022, 33(7): 1801-1809. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
辽公网安备21010302000574号
辽ICP备05000862号-2
版权所有 © 《应用生态学报》编辑部