[1] Mamiya Y. Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus. Annual Review of Phytopathology, 1983, 21: 201-220 [2] Pimentel CS, Ayres MP, Vallery E, et al. Geographical variation in seasonality and life history of pine sawyer beetles Monochamus spp: Its relationship with phoresy by the pinewood nematode Bursaphelenchus xylophilus. Agricultural and Forest Entomology, 2014, 16: 196-206 [3] Kim B, Kim JH, Ahn J, et al. A short review of the pinewood nematode Bursaphelenchus xylophilus. Toxico-logy and Environmental Health Sciences, 2020, 12: 1-8 [4] 叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析. 林业科学, 2019, 55(9): 1-10 [5] 杨宝君, 胡凯基, 王秋丽, 等. 松树对松材线虫抗性的研究. 林业科学研究, 1993(3): 249-255 [6] Robinet C, Roques A, Pan H, et al. Role of human-mediated dispersal in the spread of the pinewood nematode in China. PLoS One, 2009, 4(3): e4646 [7] 张建军, 张润志, 陈京元. 松材线虫媒介昆虫种类及其扩散能力. 浙江林学院学报, 2007, 24(3): 350-356 [8] Zhao J, Huang J, Yan J, et al. Economic loss of pine wood nematode disease in Mainland China from 1998 to 2017. Forests, 2020, 11, DOI: 10.3390/f11101042 [9] 曾菊平, 曾城, 欧阳芳, 等. 2000—2010年全国森林生物灾害发生、损失与趋势分析. 生物灾害科学, 2014, 37(1): 7-12 [10] Boyd IL, Freer-Smith PH, Gilligan CA, et al. The consequence of tree pests and diseases for ecosystem ser-vices. Science, 2013, 342, DOI: 10.1126/science.1235773 [11] Gao R, Shi J, Huang R, et al. Effects of pine wilt disease invasion on soil properties and Masson pine forest communities in the Three Gorges Reservoir region, China. Ecology and Evolution, 2015, 5: 1702-1716 [12] Calvão T, Duarte CM, Pimentel CS. Climate and landscape patterns of pine forest decline after invasion by the pinewood nematode. Forest Ecology and Management, 2019, 433: 43-51 [13] 国家林业和草原局. 国家林业和草原局公告(2020年第4号)(2020年松材线虫病疫区)[EB/OL]. (2020-03-16)[2021-07-20]. http://www.forestry.gov.cn [14] 洪承昊, 张子一, 蔡三山, 等. 基于生态景观格局的松材线虫病分析及风险预测——以宜昌市为例. 生态学杂志, 2018, 37(11): 3371-3380 [15] Choi WI, Song HJ, Kim DS, et al. Dispersal patterns of pine wilt disease in the early stage of its invasion in South Korea. Forests, 2017, 8, DOI: 10.3390/f8110411 [16] Nguyen TV, Park Y, Jeoung C, et al. Spatially explicit model applied to pine wilt disease dispersal based on host plant infestation. Ecological Modelling, 2017, 353: 54-62 [17] 洪承昊, 陈京元, 赵勇, 等. 三峡库区松材线虫病扩张速度对人为活动的响应. 生态学报, 2017, 37(20): 6800-6808 [18] Robinet C, Opstal NV, Baker R, et al. Applying a spread model to identify the entry points from which the pine wood nematode, the vector of pine wilt disease, would spread most rapidly across Europe. Biological Invasions, 2011, 13: 2981-2995 [19] Pukkala T, Möykkynen T, Robinet C, et al. Comparison of the potential spread of pinewood nematode (Bursaphelenchus xylophilus) in Finland and Iberia simulated with a cellular automaton model. Forest Pathology, 2014, 44: 341-352 [20] 柏龙, 田呈明, 洪承昊, 等. 湖北宜昌松林景观格局对松材线虫流行及扩散的影响. 生态学报, 2015, 35(24): 8107-8116 [21] Matsuhashi S, Hirata A, Akiba M, et al. Developing a point process model for ecological risk assessment of pine wilt disease at multiple scales. Forest Ecology and Management, 2020, 463, DOI: 10.1016/j.foreco.2020.118010 [22] Park YS, Chung YJ, Moon YS. Hazard ratings of pine forests to a pine wilt disease at two spatial scales (individual trees and stands) using self-organizing map and random forest. Ecological Informatics, 2013, 13: 40-46 [23] Gao R, Wang Z, Wang H, et al. Relationship between pine wilt disease outbreaks and climatic variables in the Three Gorges Reservoir Region. Forests, 2019, 10, DOI: 10.3390/f10090816 [24] David G, Giffard B, Piou D, et al. Potential effects of climate warming on the survivorship of adult Monochamus galloprovincialis. Agricultural and Forest Entomology, 2017, 19: 192-199 [25] Robinet C, Castagnone Sereno P, Mota M, et al. Effectiveness of clear-cuttings in non-fragmented pine forests in relation to EU regulations for the eradication of the pine wood nematode. Journal of Applied Ecology, 2020, 57: 460-466 [26] Fuente B, Beck P. Invasive species may disrupt protected area networks: Insights from the pine wood nematode spread in Portugal. Forests, 2018, 9, DOI: 10.3390/f9050282 [27] 丁玉洲, 吕传海, 韩斌, 等. 树木生长势与松墨天牛种群密度及松材线虫发病程度关系. 应用生态学报, 2001, 12(3): 351-354 [28] 傅抱璞. 地形和海拔高度对降水的影响. 地理学报, 1992(4): 302-314 [29] 孔维娜, 王慧, 李捷, 等.温湿度对松墨天牛越冬幼虫寿命的影响. 山西农业大学学报: 自然科学版, 2006(3): 294-295 [30] 常晓娜, 高慧璟, 陈法军, 等. 环境湿度和降雨对昆虫的影响. 生态学杂志, 2008, 27(4): 619-625 [31] Gilbert M, Grégoire JC, Freise JF, et al. Long-distance dispersal and human population density allow the prediction of invasive patterns in the horse chestnut leafminer Cameraria ohridella. Journal of Animal Ecology, 2004, 73: 459-468 [32] Hall Cushman J, Meentemeyer RK. Multi-scale patterns of human activity and the incidence of an exotic forest pathogen. Journal of Ecology, 2008, 96: 766-776 [33] Douma JC, Werf W, Hemerik L, et al. Development of a pathway model to assess the exposure of European pine trees to pine wood nematode via the trade of wood. Ecological Applications, 2017, 27: 769-785 [34] 张金屯. 植物种群空间分布的点格局分析. 植物生态学报, 1998, 22(4): 344-349 [35] Baddeley A, Rubak E, Turner R. Spatial Point Patterns: Methodology and Applications with R. Boca Raton, FL, USA: CRC Press, 2015: 127-137 [36] 沈志强, 华敏, 丹曲, 等. 藏东南川滇高山栎种群不同生长阶段的空间格局与关联性. 应用生态学报, 2016, 27(2): 387-394 [37] 刘志华, 杨健, 贺红士, 等. 黑龙江大兴安岭呼中林区火烧点格局分析及影响因素. 生态学报, 2011, 31(6): 1669-1677 [38] Funwi GN, Mateu J. Understanding the nesting spatial behaviour of gorillas in the Kagwene Sanctuary, Cameroon. Stochastic Environmental Research and Risk Assessment, 2012, 26: 793-811 [39] Baddeley A, Turner R. spatstat: An R package for analyzing spatial point patterns. Journal of Statistical Software, 2005, 12: 1-42 [40] Baddeley A, Turner R, Moller J, et al. Residual analysis for spatial point processes. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2005, 67: 617-651 [41] Woo H, Chung W, Graham JM, et al. Forest fire risk assessment using point process modelling of fire occurrence and Monte Carlo fire simulation. International Journal of Wildland Fire, 2017, 26: 789-805 [42] Baddeley A, Møller J, Waagepetersen R. Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 2010, 54: 329-350 [43] Ward SF, Fei S, Liebhold AM, et al. Spatial patterns of discovery points and invasion hotspots of non-native forest pests. Global Ecology and Biogeography, 2019, 28: 1749-1762 [44] 程功, 吕全, 冯益明, 等. 气候变化背景下松材线虫在中国分布的时空变化预测. 林业科学, 2015, 51(6): 119-126 [45] Yamaguchi R, Matsunaga K, Watanabe A. Influence of temperature on pine wilt disease progression in Pinus thunbergii seedlings. European Journal of Plant Pathology, 2020, 156: 581-590 [46] Koutroumpa FA, Rougon D, Bertheau C, et al. Evolutionary relationships within European Monochamus (Coleoptera: Cerambycidae) highlight the role of altitude in species delineation. Biological Journal of the Linnean Society, 2013, 109: 354-376 [47] Roberts M, Gilligan CA, Kleczkowski A, et al. The effect of forest management options on forest resilience to pathogens. Frontiers in Forests and Global Change, 2020, 3: 7 [48] 吴敏娟, 尤誉杰, 张晓红, 等. 不同干扰模式对受害马尾松人工纯林林分结构的影响. 应用生态学报, 2019, 30(1): 58-66 [49] Takasu F. Individual-based modeling of the spread of pine wilt disease: Vector beetle dispersal and the Allee effect. Population Ecology, 2009, 51: 399-409 [50] Takasu F, Yamamoto N, Kawasaki K, et al. Modeling the expansion of an introduced tree disease. Biological Invasions, 2000, 2: 141-150 |