[1] |
段佳茹, 王淑颖, 李小红, 等. 不同施肥条件下秸秆碳在表层和深层土壤团聚体中的分配与固存. 应用生态学报, 2022, 33(6): 1475-1481
|
[2] |
张喆, 黄永珍, 张超, 等. 不同林龄杉木人工林土壤团聚体磷素分布特征. 应用生态学报, 2022, 33(4): 939-948
|
[3] |
刘中良, 宇万太, 周桦, 等. 长期施肥对土壤团聚体分布和养分含量的影响. 土壤, 2011, 43(5): 720-728
|
[4] |
Demenois J, Carriconde F, Bonaventure P, et al. Impact of plant root functional traits and associated mycorrhizas on the aggregate stability of a tropical ferralsol. Geoderma, 2018, 312: 6-16
|
[5] |
张超, 刘国彬, 薛萐, 等. 黄土丘陵区不同植被类型根际土壤微团聚体及颗粒分形特征. 中国农业科学, 2011, 44(3): 507-515
|
[6] |
Wang Y, Wang ZL, Zhang Q, et al. Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil. Science of the Total Environment, 2018, 624: 1131-1139
|
[7] |
Galloway AF, Pedersen MJ, Merry B, et al. Xyloglucan is released by plants and promotes soil particle aggregation. New Phytologist, 2018, 217: 1128
|
[8] |
王西和, 杨金钰, 王彦平, 等. 长期施肥措施下灰漠土有机碳及团聚体稳定性特征. 中国土壤与肥料, 2021(6): 1-8
|
[9] |
杨传宝. 毛竹人工林土壤有机碳变化特征及稳定性机制. 博士论文. 北京: 中国林业科学研究院, 2019
|
[10] |
李春越, 常顺, 钟凡心, 等. 种植模式和施肥对黄土旱塬农田土壤团聚体及其碳分布的影响. 应用生态学报, 2021, 32(1): 191-200
|
[11] |
林清美, 廖超林, 戴齐, 等. 长期施肥与地下水位对红壤性水稻土微团聚体及其分形特征的影响. 土壤通报, 2018, 49(6): 1397-1404
|
[12] |
Ni HJ, Su WH, Fan SH, et al. Effects of intensive management practices on rhizosphere soil properties, root growth, and nutrient uptake in Moso bamboo plantations in subtropical China. Forest Ecology and Management, 2021, 493: 119083
|
[13] |
Yang CB, Ni HJ, Zhong ZK, et al. Changes in soil carbon pools and components induced by replacing secondary evergreen broadleaf forest with Moso bamboo plantations in subtropical China. Catena, 2019, 180: 309-319
|
[14] |
龚子同. 中国土壤系统分类. 北京: 科学出版社, 1999
|
[15] |
江春玉, 刘萍, 刘明, 等. 不同肥力红壤水稻土根际团聚体组成和碳氮分布动态. 土壤学报, 2017, 54(1): 138-149
|
[16] |
中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定法. 北京: 科学出版社, 1978: 1-88
|
[17] |
Elliott ET. Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 1986, 50: 627-633
|
[18] |
Liu DD, Ju WL, Jin XL, et al. Associated soil aggregate nutrients and controlling factors on aggregate stability in semiarid grassland under different grazing prohibition timeframes. Science of the Total Environment, 2021, 777: 146104
|
[19] |
Huang R, Lan M, Liu J, et al. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: The role of different straws returning. Environmental Science and Pollution Research, 2017, 24: 27942-27952
|
[20] |
潘英杰, 何志瑞, 刘玉林, 等. 黄土高原天然次生林植被演替过程中土壤团聚体有机碳动态变化. 生态学报, 2021, 41(13): 5195-5203
|
[21] |
胡尧, 李懿, 侯雨乐. 不同土地利用方式对岷江流域土壤团聚体稳定性及有机碳的影响. 水土保持研究, 2018, 25(4): 22-29
|
[22] |
Qin H, Chen JH, Wu QF, et al. Intensive management decreases soil aggregation and changes the abundance and community compositions of arbuscular mycorrhizal fungi in Moso bamboo (Phyllostachys pubescens) forests. Forest Ecology and Management, 2017, 40: 246-255
|
[23] |
Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 2004, 79: 7-31
|
[24] |
Leifheit EF, Veresoglou SD, Lehmann A, et al. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation: A meta-analysis. Plant and Soil, 2014, 374: 523-537
|
[25] |
杨传宝, 倪惠菁, 苏文会, 等. 经营措施对毛竹林土壤不同组分有机碳、氮及化学结构的影响. 应用生态学报, 2020, 31(1): 25-34
|
[26] |
杨静, 张耀艺, 谭思懿, 等. 中亚热带不同树种对土壤团聚体组成及其碳、氮含量的影响. 林业科学, 2022, 58(4): 51-61
|
[27] |
Oades JM. Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil, 1984, 76: 319-337
|
[28] |
王纪杰, 徐秋芳, 姜培坤. 毛竹凋落物对阔叶林土壤微生物群落功能多样性的影响. 林业科学, 2008, 44(9): 146-151
|
[29] |
苑亚茹, 韩晓增, 李禄军, 等. 低分子量根系分泌物对土壤微生物活性及团聚体稳定性的影响. 水土保持学报, 2011, 25(6): 96-99
|
[30] |
Delelegn YT, Purahong W, Blazevic A, et al. Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia. Scientific Reports, 2017, 7: 13602
|
[31] |
Rillig MC, Aguilar-Trigueros CA, Bergmann J, et al. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytologist, 2015, 205: 1385-1388
|
[32] |
Puget P, Chenu C, Balesdent J. Dynamics of soil orga-nic matter associated with particle-size fractions of water-stable aggregates. European Journal of Soil Science, 2010, 51: 595-605
|
[33] |
Six J, Elliott ET, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 2000, 32: 2099-2103
|
[34] |
Tisdall JM, Oades JM. Organic matter and water-stable aggregates in soils. Journal of Soil Science, 1982, 33: 141-163
|
[35] |
武均, 蔡立群, 齐鹏, 等. 不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征. 中国生态农业学报, 2015, 23(3): 276-284
|
[36] |
悦飞雪, 李继伟, 乔鑫鑫, 等. 生物炭对豫西丘陵区农田土壤团聚体稳定性及碳、氮分布的影响. 水土保持学报, 2019, 33(6): 265-272
|
[37] |
魏圆云, 崔丽娟, 张曼胤, 等. 土壤有机碳矿化激发效应的微生物机制研究进展. 生态学杂志, 2019, 38(4): 1202-1211
|
[38] |
Han XH, Zhao FZ, Tong XG, et al. Understanding soil carbon sequestration following the afforestation of former arable land by physical fractionation. Catena, 2017, 150: 317-327
|
[39] |
柳开楼, 都江雪, 邬磊, 等. 长期施肥对不同深度稻田土壤团聚体磷素分配的影响. 农业资源与环境学报, 2022, 39(6): 1115-1123
|
[40] |
王敬, 程谊, 蔡祖聪, 等. 长期施肥对农田土壤氮素关键转化过程的影响. 土壤学报, 2016, 53(2): 292-304
|
[41] |
邢旭明, 王红梅, 安婷婷, 等. 长期施肥对棕壤团聚体组成及其主要养分赋存的影响. 水土保持学报, 2015, 29(2): 267-273
|