应用生态学报 ›› 2023, Vol. 34 ›› Issue (9): 2575-2584.doi: 10.13287/j.1001-9332.202309.017
陈浈雄, 张超, 李全, 宋新章, 施曼*
收稿日期:
2023-05-20
修回日期:
2023-07-26
出版日期:
2023-09-15
发布日期:
2024-03-16
通讯作者:
*E-mail: shiman1031@126.com
作者简介:
陈浈雄, 男, 1998年生, 硕士研究生。主要从事森林土壤研究。E-mail: czx2528919277@126.com
基金资助:
CHEN Zhenxiong, ZHANG Chao, LI Quan, SONG Xinzhang, SHI Man*
Received:
2023-05-20
Revised:
2023-07-26
Online:
2023-09-15
Published:
2024-03-16
摘要: 土壤有机碳(SOC)分解的温度敏感性(Q10)是估算土壤碳收支动态的重要指标,但其空间变异特征及影响因素仍有较大的不确定性。本研究主要从气候环境、空间地理格局、土壤理化性质、植被类型、微生物群落组成及功能、全球气候变化等方面对Q10的影响进行综述,总结各因子对Q10影响的一般规律,比较其在不同生态系统中的相对贡献。Q10随温度和降水的增加而减少,随纬度和海拔的升高而增加。草原SOC分解的Q10高于森林,针叶林和落叶林SOC分解的Q10高于常绿阔叶林。土壤碳(C)质量与Q10呈反比,但在有外源底物输入时,C质量假说并不总是有效,在低质量土壤中提高底物可利用性可显著提高Q10。Q10随土壤中r策略型微生物(变形菌门、子囊菌门)比例的增加而降低,随K策略型微生物(酸杆菌门、担子菌门)比例的增加而增加。大气CO2浓度升高增加了Q10,而大气氮沉降降低了Q10。在自然生态系统中,浅层土壤的Q10主要受温度调控,深层土壤的Q10主要受C质量调控。在全球变暖背景下,本研究可为完善气候-C循环耦合模型、实现“碳中和”战略提供理论支撑。
陈浈雄, 张超, 李全, 宋新章, 施曼. 土壤有机碳分解温度敏感性的影响机制研究进展[J]. 应用生态学报, 2023, 34(9): 2575-2584.
CHEN Zhenxiong, ZHANG Chao, LI Quan, SONG Xinzhang, SHI Man. Mechanism underlying temperature sensitivity of soil organic carbon decomposition: A review[J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2575-2584.
[1] Roy J, Tschakert P, Waisman H, et al. Sustainable development, poverty eradication and reducing inequalities//IPCC. Global Warming of 1.5 ℃: An IPCC Special Report, 2018 [2] Friedlingstein P, Jones MW, O’sullivan M, et al. Global carbon budget 2019. Earth System Science Data, 2019, 11: 1783-1838 [3] Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 2008, 451: 289-292 [4] Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440: 165-173 [5] Cox PM, Betts R, Jones CD, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408: 184-187 [6] Wang QK, Liu SG, Tian P. Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Global Change Biology, 2018, 24: 2841-2849 [7] Peng SS, Piao SL, Wang T, et al. Temperature sensiti-vity of soil respiration in different ecosystems in China. Soil Biology and Biochemistry, 2009, 41: 1008-1014 [8] Li J, Nie M, Pendall E, et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Global Change Biology, 2020, 26: 1873-1885 [9] Ding JZ, Chen LY, Zhang BB, et al. Linking temperature sensitivity of soil CO2 release to substrate, environmental, and microbial properties across alpine ecosystems. Global Biogeochemical Cycles, 2016, 30: 1310-1323 [10] 杨庆朋, 徐明, 刘洪升, 等. 土壤呼吸温度敏感性的影响因素和不确定性. 生态学报, 2011, 31(8): 2301-2311 [11] Craine J, Spurr R, Mclauchlan K, et al. Landscape-level variation in temperature sensitivity of soil organic carbon decomposition. Soil Biology and Biochemistry, 2010, 42: 373-375 [12] Liu Y, He NP, Zhu JP, et al. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 2017, 23: 3393-3402 [13] Zeng XM, Jiao F, Ji C, et al. Microbial assemblies associated with temperature sensitivity of soil respiration along an altitudinal gradient. Science of the Total Environment, 2022, 820: 153257 [14] Xu X, Zhou Yan, Ruan HH, et al. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China. Soil Biology and Biochemistry, 2010, 42: 1811-1815 [15] Wang GB, Zhou Yan, Xu X, et al. Temperature sensitivity of soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains, China. PLoS One, 2013, 8: e53914 [16] Gutiérrez-Girón A, Diaz-Pines E, Rubio A, et al. Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils. Geoderma, 2015, 237: 1-8 [17] Klimek B, Jelonkiewicz L, Niklinska M, et al. Drivers of temperature sensitivity of decomposition of soil organic matter along a mountain altitudinal gradient in the Western Carpathians. Ecological Research, 2016, 31: 609-615 [18] Zimmermann M, Meir P, Bird MI, et al. Temporal variation and climate dependence of soil respiration and its components along a 3000 m altitudinal tropical forest gradient. Global Biogeochemical Cycles, 2010, 24: GB4012 [19] Blagodatskaya E, Blagodatsky S, Khomyakov N, et al. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro. Scientific Reports, 2016, 6: 22240 [20] Vanhala P, Karhu K, Tuomi M, et al. Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone. Soil Biology and Biochemistry, 2008, 40: 1758-1764 [21] Chen S, Wang J, Zhang T, et al. Climatic, soil, and vegetation controls of the temperature sensitivity (Q10) of soil respiration across terrestrial biomes. Global Ecology and Conservation, 2020, 22: e00955 [22] Craine JM, Gelderman TM. Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland. Soil Biology and Biochemistry, 2011, 43: 455-457 [23] Smith VR. Moisture, carbon and inorganic nutrient controls of soil respiration at a sub-Antarctic island. Soil Biology and Biochemistry, 2005, 37: 81-91 [24] Wood TE, Detto M, Silver WL, et al. Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest. PLoS One, 2013, 8: e80965 [25] Balogh J, Pintér K, Fóti S, et al. Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biology and Biochemistry, 2011, 43: 1006-1013 [26] Ding F, Huang Y, Sun WJ, et al. Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: An incubation study with temperate grassland and forest soils in northern China. PLoS One, 2014, 9: e95348 [27] Ding F, Sun WJ, Huang Y, et al. Larger Q10 of carbon decomposition in finer soil particles does not bring long-lasting dependence of Q10 on soil texture. European Journal of Soil Science, 2018, 69: 336-347 [28] Arevalo CBM, Chang SX, Bhatti JS, et al. Mineralization potential and temperature sensitivity of soil organic carbon under different land uses in the Parkland Region of Alberta, Canada. Soil Science Society of America Journal, 2012, 76: 241-251 [29] John L. Let the soil work for us. Bioscience, 1997, 47: 321-322 [30] Six J, Conant RT, Paul EA, et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 2002, 241: 155-176 [31] Ghosh A, Bhattacharyya R, Dey A, et al. Long-term fertilisation impact on temperature sensitivity of aggregate associated soil organic carbon in a sub-tropical inceptisol. Soil & Tillage Research, 2019, 195: 104369 [32] Wang Q, Wang D, Wen X, et al. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands. PLoS One, 2015, 10: e0117033 [33] Dungait J, Hopkins DW, Gregory AS, et al. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 2012, 18: 1781-1796 [34] Delgado-Baquerizo M, Eldridge DJ, Ochoa V, et al. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters, 2017, 20: 1295-1305 [35] Xiao H, Shi Z, Li Z, et al. Responses of soil respiration and its temperature sensitivity to nitrogen addition: A meta-analysis in China. Applied Soil Ecology, 2020, 150: 103484 [36] Jia J, Liu Z, Haghipour N, et al. Molecular C-14 evidence for contrasting turnover and temperature sensitivity of soil organic matter components. Ecology Letters, 2023, 26: 778-788 [37] Gentsch N, Wild B, Mikutta R, et al. Temperature response of permafrost soil carbon is attenuated by mineral protection. Global Change Biology, 2018, 24: 3401-3415 [38] Qin SQ, Kou D, Mao C, et al. Temperature sensitivity of permafrost carbon release mediated by mineral and microbial properties. Science Advances, 2021, 7: eabe3596 [39] Su J, Zhang H, Han X, et al. Low carbon availability in paleosols nonlinearly attenuates temperature sensitivity of soil organic matter decomposition. Global Change Biology, 2022, 28: 4180-4193 [40] Bosatta E, Ågren GI. Soil organic matter quality interpreted thermodynamically. Soil Biology and Biochemistry, 1999, 31: 1889-1891 [41] Xu X, Luo YQ, Zhou JZ. Carbon quality and the temperature sensitivity of soil organic carbon decomposition in a tallgrass prairie. Soil Biology and Biochemistry, 2012, 50: 142-148 [42] Hilasvuori E, Akujarvi A, Fritze H, et al. Temperature sensitivity of decomposition in a peat profile. Soil Biology and Biochemistry, 2013, 67: 47-54 [43] Li JQ, Pei JM, Dijkstra FA, et al. Microbial carbon use efficiency, biomass residence time and temperature sensitivity across ecosystems and soil depths. Soil Biology and Biochemistry, 2021, 154: 108117 [44] Ghosh A, Das A, Das D, et al. Contrasting land use systems and soil organic matter quality and temperature sensitivity in North Eastern India. Soil & Tillage Research, 2020, 199: 104573 [45] Hartley IP, Ineson P. Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biology and Biochemistry, 2008, 40: 1567-1574 [46] Yan D, Li JQ, Pei JM, et al. The temperature sensitivity of soil organic carbon decomposition is greater in subsoil than in topsoil during laboratory incubation. Scientific Reports, 2017, 7: 5181 [47] Karhu K, Fritze H, Tuomi M, et al. Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biology and Biochemistry, 2010, 42: 72-82 [48] Feng CX, Godbold DL, Sun HL, et al. Temperature sensitivity of organic matter mineralization as affected by soil edaphic properties and substrate quality. Catena, 2022, 210: 105901 [49] Creamer CA, Menezes A, Krull ES, et al. Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biology and Biochemistry, 2014, 80: 175-188 [50] Gershenson A, Bader NE, Cheng W. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Global Change Biology, 2010, 15: 176-183 [51] Liu Y, Xu L, Zheng S, et al. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 2021, 154: 108148 [52] Zhu B, Cheng W. Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition. Global Change Biology, 2011, 17: 2172-2183 [53] Michaelis L, Menten ML. The kinetics of invertin action. Biochemische Zeitschrift, 1913, 49: 333-369 [54] Reynolds LL, Lajtha K, Bowden RD, et al. The carbon quality-temperature hypothesis does not consistently predict temperature sensitivity of soil organic matter mineralization in soils from two manipulative ecosystem experiments. Biogeochemistry, 2017, 136: 249-260 [55] Eberwein JR, Oikawa PY, Allsman LA, et al. Carbon availability regulates soil respiration response to nitrogen and temperature. Soil Biology and Biochemistry, 2015, 88: 158-164 [56] 王丹, 吕瑜良, 徐丽, 等. 植被类型变化对长白山森林土壤碳矿化及其温度敏感性的影响. 生态学报, 2013, 33(19): 6373-6381 [57] 郑鹏飞, 余新晓, 贾国栋, 等. 北京山区不同植被类型的土壤呼吸特征及其温度敏感性. 应用生态学报, 2019, 30(5): 1726-1734 [58] Lee NY, Koo JW, Noh NJ, et al. Autotrophic and heterotrophic respiration in needle fir and Quercus-dominated stands in a cool-temperate forest, central Korea. Journal of Plant Research, 2010, 123: 485-495 [59] Yuste JC, Janssens IA, Carrara A, et al. Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology, 2004, 10: 161-169 [60] 周慧, 吴立, 余健, 等. 庐山森林土壤碳氮硫含量变化特征及影响因素. 地球科学前沿, 2019, 9(7): 660-669 [61] Pei JM, Yan D, Li JQ, et al. Alpine meadow degradation enhances the temperature sensitivity of soil carbon decomposition on the Qinghai-Tibetan Plateau. Applied Soil Ecology, 2022, 170: 104290 [62] Wang X, Piao S, Ciais P, et al. Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality? Soil Biology and Biochemistry, 2010, 42: 1728-1734 [63] Colman BP, Schimel JP. Drivers of microbial respiration and net N mineralization at the continental scale. Soil Biology and Biochemistry, 2013, 60: 65-76 [64] Zhang XH, Li LQ, Pan GX. Topsoil organic carbon mineralization and CO2 evolution of three paddy soils from South China and the temperature dependence. Journal of Environmental Sciences, 2007, 19: 319-326 [65] Zogg GP, Zak DR, Ringelberg DB, et al. Compositional and functional shifts in microbial communities due to soil warming. Soil Science Society of America Journal, 1997, 61: 475-481 [66] Xu M, Li X, Kuyper TW, et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Global Change Biology, 2021, 27: 2061-2075 [67] Six J, Frey SD, Thiet RK, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 2006, 70: 555-569 [68] Trivedi P, Anderson IC, Singh BK. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction. Trends in Microbiology, 2013, 21: 641-651 [69] Li H, Yang S, Semenov MV, et al. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biology, 2021, 27: 2763-2779 [70] Zhang XY, Wang W, Chen WL, et al. Comparison of seasonal soil microbial process in snow-covered temperate ecosystems of northern China. PLoS One, 2014, 9: e92985 [71] Qian YQ, He FP, Wang W. Seasonality, rather than nutrient addition or vegetation types, influenced short-term temperature sensitivity of soil organic carbon decomposition. PLoS One, 2016, 11: e0153415 [72] Qin SQ, Chen LY, Fang K, et al. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Science Advances, 2019, 5: eaau1218 [73] Wei H, Guenet B, Vicca S, et al. Thermal acclimation of organic matter decomposition in an artificial forest soil is related to shifts in microbial community structure. Soil Biology and Biochemistry, 2014, 71: 1-12 [74] Zhou JZ, Xue K, Xie JP, et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2011, 2: 106-110 [75] Wang YF, Xue K. Large-scale evidence for microbial response and associated carbon release after permafrost thaw. Global Change Biology, 2020, 27: 3197-3199 [76] Berlemont R, Martiny AC. Phylogenetic distribution of potential cellulases in bacteria. Applied and Environmental Microbiology, 2013, 79: 1545-1554 [77] Deng Q, Zhou G, Liu J, et al. Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China. Biogeosciences, 2009, 7: 9-18 [78] Chen ZZ, Wang BY, Wang JY, et al. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field. Environmental Monitoring & Assessment, 2015, 188: 545 [79] Bunce J. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Oecologia, 2004, 140: 1-10 [80] Yang Y, Li T, Pokharel P, et al. Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate. Soil Biology and Biochemistry, 2022, 174: 108814 [81] Li Q, Song XZ, Chang SX, et al. Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest. Agricultural and Forest Meteorology, 2019, 268: 48-54 [82] Yang Y, Chen XL, Liu LX, et al. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: A global meta-analysis. Global Change Biology, 2022, 28: 6446-6461 [83] 葛晓改, 童冉, 曹永慧, 等. 模拟干旱下凋落物输入对毛竹林土壤呼吸及温度敏感性的影响. 应用生态学报, 2018, 29(7): 2233-2242 [84] Chen H, Zou J, Cui J, et al. Wetland drying increases the temperature sensitivity of soil respiration. Soil Biology and Biochemistry, 2018, 120: 24-27 [84] Zhang BW, Jiang Y, Chen DX, et al. Highly spatial variation of soil microbial respiration and temperature sensitivity in a subtropical forest. Science of the Total Environment, 2021, 808: 152197 [86] Zheng ZM, Yu GR, Fu YL, et al. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: A trans-China based case study. Soil Biology and Biochemistry, 2009, 41: 1531-1540 [87] Li JQ, Pei JM, Cui J, et al. Carbon quality mediates the temperature sensitivity of soil organic carbon decomposition in managed ecosystems. Agriculture, Ecosystems & Environment, 2017, 250: 44-50 |
[1] | 洪宣生, 王宗星, 徐清福, 邱勇斌, 成向荣. 杉木+闽楠复层林土壤氮磷组分及微生物性状随林龄变化特征 [J]. 应用生态学报, 2024, 35(3): 622-630. |
[2] | 杨雪, 曹霞, 白冰, 袁艳娜, 张宁, 谢洋, 武春成. 根施生物炭对设施连作土壤氮素转化及黄瓜幼苗根系氮代谢的影响 [J]. 应用生态学报, 2024, 35(3): 713-720. |
[3] | 翁凌胤, 栾冬冬, 周大朴, 郭庆港, 王光州, 张俊伶. 利用合成菌群促进作物健康: 进展与展望 [J]. 应用生态学报, 2024, 35(3): 847-857. |
[4] | 李佳玉, 施秀珍, 李帅军, 王振宇, 王建青, 邹秉章, 王思荣, 黄志群. 杉木人工林和天然次生林林龄对土壤酶活性的影响 [J]. 应用生态学报, 2024, 35(2): 339-346. |
[5] | 朱雪峰, 孔维栋, 黄懿梅, 肖可青, 罗煜, 安韶山, 梁超. 土壤微生物碳泵概念体系2.0 [J]. 应用生态学报, 2024, 35(1): 102-110. |
[6] | 杨阳, 王宝荣, 窦艳星, 薛志婧, 孙慧, 王云强, 梁超, 安韶山. 植物源和微生物源土壤有机碳转化与稳定研究进展 [J]. 应用生态学报, 2024, 35(1): 111-123. |
[7] | 申继凯, 黄懿梅, 黄倩, 徐凤璟. 黄土高原不同植被类型土壤微生物残体碳的积累及其对有机碳的贡献 [J]. 应用生态学报, 2024, 35(1): 124-132. |
[8] | 贾娟, 李星奇, 冯晓娟. 排水对我国两种典型湿地土壤有机碳微生物转化过程的影响 [J]. 应用生态学报, 2024, 35(1): 133-140. |
[9] | 覃振凯, 刘润红, 何鹏, 王聪, 聂彦霞, 申卫军. 马尾松纯林混交改造对土壤微生物残体碳和有机碳组分的影响 [J]. 应用生态学报, 2024, 35(1): 141-152. |
[10] | 胡建文, 刘常富, 勾蒙蒙, 陈会玲, 雷蕾, 肖文发, 朱粟锋, 斛如媛. 林龄对马尾松人工林微生物残体碳积累的影响机制 [J]. 应用生态学报, 2024, 35(1): 153-160. |
[11] | 张羽涵, 李瑶, 周玥, 刘春晖, 安韶山. 宁南山区不同恢复年限柠条林地土壤微生物残体碳沿剖面分布特征 [J]. 应用生态学报, 2024, 35(1): 161-168. |
[12] | 井艳丽, 李旭华, 张袁, 张馨月, 刘美, 冯秋红. 间伐对川西亚高山云杉人工林土壤微生物残体碳积累的影响 [J]. 应用生态学报, 2024, 35(1): 169-176. |
[13] | 王翠娟, 刘小飞, 杨柳明, 贾淑娴. 中亚热带米槠人工林土壤微生物残体碳对凋落物和根系碳输入的响应 [J]. 应用生态学报, 2024, 35(1): 177-185. |
[14] | 代泽成, 刘月秀, 党宁, 王志瑞, 蔡江平, 张玉革, 宋永波, 李慧, 姜勇. 长期氮水添加对温带草原土壤化学性质和微生物学特性的短期遗留效应 [J]. 应用生态学报, 2023, 34(7): 1834-1844. |
[15] | 薛志婧, 屈婷婷, 刘春晖, 刘小槺, 王蕊, 王宁, 周正朝, 董治宝. 培养条件下枯落物分解过程中微生物残体对土壤有机碳形成的贡献 [J]. 应用生态学报, 2023, 34(7): 1845-1852. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||