[1] 骆丹, 王春胜, 曾杰. 西南桦幼林冠层光合特征及其对造林密度的响应. 中南林业科技大学学报, 2020, 40(4): 44-49 [2] 刘晓东, 朱春全, 雷静品, 等. 杨树人工林冠层光合辐射分布的研究. 林业科学, 2000, 36(3): 2-7 [3] Monsi M, Saeki T. On the factor light in plant communities and its importance for matter production. Annuals of Botany, 2005, 95: 549-567 [4] Valladares F, Gianoli E, Gómez JM. Ecological limits to plant phenotypic plasticity. New Phytologist, 2007, 176: 749-763 [5] 夏国威, 陈东升, 孙晓梅, 等. 日本落叶松冠层光合生理参数的空间异质性研究. 林业科学研究, 2018, 31(6): 130-137 [6] 刘强, 董利虎, 李凤日, 等. 长白落叶松冠层光合作用的空间异质性. 应用生态学报, 2016, 27(9): 2789-2796 [7] Sakowska K, Alberti G, Genesio L, et al. Leaf and cano-py photosynthesis of a chlorophyll deficient soybean mutant. Plant, Cell and Environment, 2018, 41: 1427-1437 [8] Yang F, Feng L, Liu Q, et al. Effect of interactions between light intensity and red-to-far-red ratio on the photosynthesis of soybean leaves under shade condition. Environmental and Experimental Botany, 2018, 150: 79-87 [9] Cano FJ, Sanchez-Gomez D, Rodriguez-Calcerrada J, et al. Effects of drought on mesophyll conductance and photosynthesis limitation at different tree canopy layers. Plant, Cell and Environment, 2013, 36: 1961-1980 [10] Ellsworth DS, Reich PB. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia, 1993, 96: 169-178 [11] Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33: 317-345 [12] Peguero-Pina JJ, Siso S, Flexas J, et al. Cell-level anatomical characteristics explain high mesophyll conduc-tance and photosynthetic capacity in sclerophyllous Medi-terranean oaks. New Phytologist, 2017, 214: 585-596 [13] Flexas J, Barbour MM, Brendel O, et al. Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. Plant Science, 2012, 193-194: 70-84 [14] Campony CE, Yjoelker MG, von Caemmere S, et al. Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks. Plant, Cell and Environment, 2016, 39: 2762-2773 [15] 钟军珺, 李向茂, 王本耀, 等. 上海公共绿地木本植物资源调查与分析. 中国园林, 2019, 35(增刊2): 123-127 [16] 罗彬莹, 刘卫东, 吴际友, 等. 干旱胁迫对樟树幼苗光合特性和水分利用的影响. 中南林业科技大学学报, 2019, 39(5): 49-55 [17] 周际海, 程坤, 郜茹茹, 等. 土壤镉污染对香樟幼苗光合和生理特性的影响. 林业科学, 2020, 56(6): 193-201 [18] Cornelissen JHC, Lavorel S, Garnier E, et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51: 335-380 [19] 李合生, 孙群, 赵世杰, 等. 植物生理生化实验原理与技术. 北京: 高教出版社, 2005: 135 [20] 王娟, 王帆, 张鸽, 等. 烤烟烟叶淀粉含量5种测定方法的比较. 分子植物育种, 2019, 17(5): 1673-1678 [21] Grassi G, Magnani F. Stomatal, mesophyll conductance and biochemical limitation to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell and Environment, 2005, 28: 834-849 [22] Harley PC, Loreto F, Di Marco G, et al. Theoretical considerations when estimating the mesophyll conduc-tance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiology, 1992, 98: 1429-1436 [23] Bernacchi CJ, Portis AR, Nakano H, et al. Temperature response of mesophyll conductance. Implication for the determination of Rubisco enzyme kinetics and for limitation to photosynthesis in vivo. Plant Physiology, 2002, 130: 1992-1998 [24] Way DA, Yamori W. Thermal acclimation of photosynthesis: On the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynthesis Research, 2014, 119: 89-100 [25] Farquhar G, von Caemmerer S, Berry J. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149: 78-90 [26] Bernacchi CJ, Pimentel C, Long SP. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant, Cell and Environment, 2003, 26: 1419-1430 [27] 覃凤飞, 李强, 崔棹茗, 等. 越冬期遮阴条件下3个不同秋眠型紫花苜蓿品种叶片解剖结构与其光生态适应性. 植物生态学报, 2012, 36(4): 333-345 [28] Yoshimura K. Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen distribution of leaves in Cedrela sinensis. Plant, Cell and Environment, 2010, 33: 750-758 [29] Khan MNI, Khatun S, Aazd MS, et al. Leaf morpholo-gical and anatomical plasticity in Sundri (Heritiera fomes Buch.-Ham.) along different canopy light and salinity zones in the Sundarbans mangrove forest, Bangladesh. Global Ecology and Conservation, 2020, 23: e01127 [30] 张艳萍, 刘卫东, 龙达, 等. 5种观赏桃F1代叶片解剖结构与光合性能研究. 南方林业科学, 2021, 49(1): 1-5 [31] Almeida GM, Costa AC, Batista PF, et al. Can light intensity modulate the physiological, anatomical, and reproductive responses of soybean plants to water deficit? Physiologia Plantarum, 2021, 172: 1301-1320 [32] 陈丽莉, 梁文斌, 吴思政, 等. 短梗大参解剖学特性及生态学意义. 经济林研究, 2016, 34(4): 148-151 [33] 王雁, 苏雪痕, 彭镇华. 植物耐荫性研究进展. 林业科学研究, 2002, 15(2): 349-355 [34] 项文化, 黄志宏, 闫文德, 等. 森林生态系统碳氮循环功能耦合研究综述. 生态学报, 2006, 26(7): 2365-2372 [35] 张斌斌, 蔡志翔, 沈志军, 等. 遮阴对红叶桃幼苗部分生理特性的影响. 江苏农业科学, 2011, 39(40): 161-164 [36] 颉洪涛, 虞木奎, 成向荣. 光照强度变化对5种耐阴植物氮磷养分含量、分配以及限制状况的影响. 植物生态学报, 2017, 41(5): 559-569 [37] 闫丽飞, 杨庆朋, 郑文辉, 等. 杉木幼苗非结构性碳水化合物对遮阴及恢复光照的响应. 西北植物学报, 2020, 40(2): 311-318 [38] 宋洋, 廖亮, 刘涛, 等. 不同遮荫水平下香榧苗期光合作用及氮分配的响应机制. 林业科学, 2016, 52(5): 55-63 [39] Luo GY, Li JM, Guo SL, et al. Photosynthesis, nitrogen allocation, non-structural carbohydrate allocation, and C:N:P stoichiometry of Ulmus elongata seedlings exposed to different light intensities. Life, 2022, 12: 1310 [40] 唐兴林, 姜姜, 金洪平, 等. 遮阴对闽楠叶绿素含量和光合特性的影响. 应用生态学报, 2019, 30(9): 2941-2948 [41] 王亚楠, 董丽娜, 丁彦芬, 等. 遮阴对4种紫堇属植物光合特性和叶绿素荧光参数的影响. 应用生态学报, 2020, 31(3): 769-777 [42] 张彦敏, 周广胜. 植物叶片最大羧化速率及其对环境因子响应的研究进展. 生态学报, 2012, 32(18): 5907-5917 [43] Dalmolin AC, Dalmagro HJ, Lobo deAF, et al. Photosynthetic light and carbon dioxide response of the invasive tree, Vochysia divergens Pohl, to experimental flooding and shading. Photosynthetica, 2013, 51: 379-386 [44] 郑云普, 常志杰, 韩怡, 等. 土壤水分亏缺和大气CO2浓度升高对冬小麦光合特性的影响. 作物学报, 2022, 48(11): 2920-2933 [45] 韩吉梅, 张旺锋, 熊栋梁, 等. 植物光合作用叶肉导度及主要限制因素研究进展. 植物生态学报, 2017, 41(8): 914-924 [46] Crous KY, Campany C, López R, et al. Canopy position affects photosynthesis and anatomy in mature Eucalyptus trees in elevated CO2. Tree Physiology, 2020, 41: 206-222 [47] 刘文鑫, 陈志成, 代永欣, 等. 水通道蛋白PIP1基因过表达杨树的光合生理过程对干旱和复水的响应. 林业科学, 2020, 56(2): 69-78 |