[1] Carlson JE, Adams CA, Holsinger KE. Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along gradients in a South African shrub. Annals of Botany, 2016, 117: 195-207 [2] 郑梦娜, 贾傲, 陈之光, 等. 青藏高原矮火绒草(Leontopodium nanum)叶片性状对海拔高度变化的响应.生态学报, 2022, 42(24): 10305-10316 [3] 侯媛, 刘旻霞, 孙辉荣. 青藏高原东缘亚高寒草甸植物叶性状对微生境变化的响应. 应用生态学报, 2017, 28(1): 71-79 [4] 贾傲, 郑梦娜, 陈之光, 等. 青藏高原雪白委陵菜(Potentilla nivea)叶片性状对海拔的响应. 生态学杂志, 2023, 42(4): 769-779 [5] Zhang ZJ, Wang X, Guo SJ, et al. Divergent patterns and drivers of leaf functional traits of Robinia pseudoacacia and Pinus tabuliformis plantations along a precipitation gradient in the Loess Plateau, China. Journal of Environment Management, 2023, 348: 119318 [6] Yu X, Ji RX, Li MM, et al. Geographical variation in functional traits of leaves of Caryopteris mongholica and the role of climate. BMC Plant Biology, 2023, 23: 394 [7] Manitašević JS, Hočevar K, Vuleta A, et al. Predicting the responses of functional leaf traits to global warming: An in situ temperature manipulation design using Iris pumila L. Plants, 2023, 12: 3114 [8] Xu YS, Feng ZZ, Peng JL, et al. Variations in leaf anatomical characteristics drive the decrease of mesophyll conductance in poplar under elevated ozone. Global Change Biology, 2023, 29: 2804-2823 [9] 李蟠, 孙玉芳, 王三根, 等. 贡嘎山地区不同海拔冷杉比叶质量和非结构性碳水化合物含量变化. 应用生态学报, 2008, 19(1): 8-12 [10] 金雅琴, 李冬林. 遮光对红果榆幼苗光合作用及叶片解剖结构的影响. 西北植物学报, 2023, 43(6): 1006-1016 [11] 朱玉英, 张华敏, 丁明军, 等. 青藏高原植被绿度变化及其对干湿变化的响应. 植物生态学报, 2023, 47(1): 51-64 [12] Zhai BY, Hu ZY, Sun SQ, et al. Characteristics of photosynthetic rates in different vegetation types at high-altitude in mountainous regions. Science of the Total Environment, 2023, 907: 168091 [13] Liu WS, Zheng L, Qi DH. Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecology and Evolution, 2020, 10: 8166-8175 [14] 孙会婷, 江莎, 刘婧敏, 等. 青藏高原不同海拔3种菊科植物叶片结构变化及其生态适应性. 生态学报, 2016, 36(6): 1559-1570 [15] 何涛, 吴学明, 贾敬芬. 青藏高原高山植物的形态和解剖结构及其对环境的适应性研究进展. 生态学报, 2007, 27(6): 2574-2583 [16] 唐探, 姜永雷, 冯程程, 等. 滇西北不同海拔梯度下急尖长苞冷杉叶片的生态解剖结构特性研究. 江西农业大学学报, 2015, 37(2): 218-224 [17] 杨朗生, 刘兴良, 刘世荣, 等. 卧龙巴郎山川滇高山栎群落植物生活型海拔梯度特征. 生态学报, 2017, 37(21): 7170-7180 [18] 乌佳美, 冯秋红, 史作民, 等. 巴郎山大叶醉鱼草叶片非结构性碳水化合物和氮分配的海拔响应. 生态学报, 2022, 42(17): 7278-7287 [19] 刘兴良, 贾程, 何飞, 等. 巴郎山川滇高山栎群落植物科组成的海拔梯度特征. 四川林业科技, 2015, 36(2): 1-9 [20] Wu JM, Shi ZM, Liu S, et al. Photosynthetic capacity of male and female Hippophae rhamnoides plants along an elevation gradient in eastern Qinghai-Tibetan Plateau, China. Tree Physiology, 2021, 41: 76-88 [21] Luo YK, Hu HF, Zhao MY, et al. Latitudinal pattern and the driving factors of leaf functional traits in 185 shrub species across eastern China. Journal of Plant Ecology, 2019, 12: 67-77 [22] 黄旬, 王玲, Faisal H, 等. 喜旱莲子草在遮光环境下的生理生态参数响应模式和遮光防治阈值. 草业科学, 2022, 39(9): 1842-1848 [23] 谭一波, 张统, 蒋行健, 等. 猫儿山交让木叶性状海拔变异格局及其环境影响因子. 应用生态学报, 2023, 34(12): 3223-3231 [24] Kaproth MA, Fredericksen BW, González-Rodríguez A, et al. Drought response strategies are coupled with leaf habit in 35 evergreen and deciduous oak (Quercus) species across a climatic gradient in the Americas. New Phytologist, 2023, 239: 888-904 [25] Xing HS, Shi ZM, Liu S, et al. Leaf traits divergence and correlations of woody plants among the three plant functional types on the eastern Qinghai-Tibetan Plateau, China. Frontier in Plant Science, 2023, 14: 1128227 [26] 刘艳芳, 张艳茹, 陈红. 贡嘎山阔叶木本植物叶片解剖结构及其生存策略分析. 西南大学学报: 自然科学版, 2015, 37(5): 66-72 [27] 郭文文, 卓么草, 方江平, 等. 藏东南色季拉山薄毛海绵杜鹃叶解剖结构特征与环境适应性. 西北植物学报, 2020, 40(5): 811-818 [28] 王玉萍, 高会会, 张峰, 等. 珠芽蓼叶片对海拔变化的表型可塑. 应用生态学报, 2021, 32(6): 2070-2078 [29] Gonzalez-Paleo L, Ravetta DA. Relationship between photosynthetic rate, water use and leaf structure in desert annual and perennial forbs differing in their growth. Photosynthetica, 2018, 56: 1177-1187 [30] 李芳兰, 包维楷, 刘俊华, 等. 岷江上游干旱河谷海拔梯度上白刺花叶片生态解剖特征研究. 应用生态学报, 2006, 17(1): 5-10 [31] 乌佳美, 唐敬超, 史作民, 等. 巴郎山糙皮桦叶片光合氮利用效率的海拔响应. 应用生态学报, 2019, 30(3): 751-758 [32] Trošt ST, Turk T, Alchemilla MO. Functional traits respond to diverse alpine environmental conditions in Karavanke, Slovenia. Plants, 2022, 11: 2527 [33] 宁朋, 王菲, 程小毛, 等. 川滇高山栎光合特性对不同海拔梯度的响应. 西南林业大学学报: 自然科学, 2021, 41(6): 47-53 [34] 王玉萍, 何文亮, 程李香, 等. 不同海拔珠芽蓼叶片类囊体膜色素含量及光系统功能变化. 草业学报, 2011, 20(1): 75-81 [35] Li CY, Zhang XJ, Liu, XL, et al. Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient. Silva Fennica, 2006, 40: 5-13 [36] 向前胜, 张登山. 青海高原西北小檗叶片结构和光合特性对海拔梯度的响应. 青海农林科技, 2023(1): 67-74 [37] 蔡东升, 陈情情, 裴欣睲, 等. 不同氮素形态对油茶苗叶片解剖结构与光合特性的影响. 森林与环境学报, 2023, 43(2): 194-200 [38] 江慧欣, 王嘉琪, 黄春岩, 等. 8种绿化树种光合特性及叶片解剖结构比较. 植物研究, 2019, 39(1): 10-16 [39] 冷寒冰, 万宁海, 刘群录. 香樟冠层光环境对叶片功能性状和光合特性的影响. 应用生态学报, 2023, 34(8): 2113-2122 |