[1] 杜素洁, 郭建洋, 赵浩翔, 等. 近十年我国入侵生物预防与监控研究. 植物保护, 2023, 49(5): 410-418 [2] 郭建洋, 冼晓青, 张桂芬, 等. 我国入侵昆虫研究进展. 应用昆虫学报, 2019, 56(6): 1186-1192 [3] 蒋红波, 魏丹丹, 周忠实, 等. 我国农业入侵生物科学管控体系形成与发展. 植物保护, 2023, 49(5): 419-425 [4] 商明清, 秦萌, 李洪刚, 等. 马铃薯块茎蛾传入山东的风险评估及管理对策. 植物检疫, 2018, 32(6): 70-72 [5] 杜霞, 刘霞, 周文武, 等. 马铃薯块茎蛾生物防治研究进展与展望. 中国生物防治学报, 2021, 37(1): 60-69 [6] 李秀军, 金秀萍, 李正跃. 马铃薯块茎蛾研究现状及进展. 青海师范大学学报: 自然科学版, 2005(2): 67-70 [7] 郭志祥, 何成兴, 许胡兰, 等. 马铃薯块茎蛾对几种茄科植物的嗜食性研究. 西南农业学报, 2014, 27(6): 2381-2384 [8] 高玉林, 徐进, 刘宁, 等. 我国马铃薯病虫害发生现状与防控策略. 植物保护, 2019, 45(5): 106-111 [9] 闫俊杰, 郭文超, 李国清, 等. 我国马铃薯害虫防控现状与展望. 植物保护, 2023, 49(5): 190-195 [10] 赵竞, 张磊, 孙平平, 等. 马铃薯病毒及类病毒传毒介体研究进展. 中国马铃薯, 2022, 36(3): 236-255 [11] 张梦迪, 闫俊杰, 高玉林. 马铃薯块茎蛾对不同品种马铃薯块茎的适应性分析. 中国农业科学, 2021, 54(3): 536-546 [12] 万方浩, 郭建英, 张峰. 中国生物入侵研究. 北京: 科学出版社, 2009 [13] 郭建洋, 冼晓青, 刘万学. 我国入侵昆虫研究进展. 应用昆虫学报, 2019, 56(6): 1186-1192 [14] Li GQ, Zhang XQ, Huang JH, et al. Afforestation and climatic niche dynamics of black locust (Robinia pseudoacacia). Forest Ecology and Management, 2018, 407: 184-190 [15] Petitpierre B, Kueffer C, Broennimann O, et al. Climatic niche shifts are rare among terrestrial plant invaders. Science, 2012, 335: 1344-1348 [16] Torres U, Godsoe W, Buckley HL, et al. Using niche conservatism information to prioritize hotspots of invasion by non-native freshwater invertebrates in New Zealand. Diversity and Distributions, 2018, 24: 1802-1815 [17] Hill MP, Gallardo B, Terblanche JS. A global assessment of climatic niche shifts and human influence in insect invasions. Global Ecology and Biogeography, 2017, 26: 679-689 [18] 张辉盛, 崔绍朋, 张志伟, 等. 扶桑绵粉蚧多维气候生态位保守性与入侵风险. 应用生态学报, 2023, 34(6): 1649-1658 [19] Tang XG, Yuan YD, Liu XF, et al. Potential range expansion and niche shift of the invasive Hyphantria cunea between native and invasive countries. Ecological Entomology, 2021, 46: 910-925 [20] Eyring V, Gleckler PJ, Heinze C, et al. Towards improved and more routine Earth system model evaluation in CMIP. Earth System Dynamics, 2016, 7: 813-830 [21] Guisan A, Petitpierre B, Broennimann O, et al. Unifying niche shift studies: Insights from biological invasions. Trends in Ecology & Evolution, 2014, 29: 260-269 [22] Liu CL, Wolter C, Xian WW, et al. Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117: 23643-23651 [23] Broennimann O, Fitzpatrick MC, Pearman PB, et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 2012, 21: 481-497 [24] Schoener TW. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 1970, 51: 408-418 [25] Di Cola V, Broennimann O, Petitpierre B, et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 2017, 40: 774-787 [26] Phillips SJ, Anderson RP, Schapire REJEM. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190: 231-259 [27] Ahmed SE, Mcinerny G, O'hara K, et al. Scientists and software-surveying the species distribution modelling community. Diversity and Distributions, 2015, 21: 258-267 [28] Vaz UL, Cunha HF, Nabout JC. Trends and biases in global scientific literature about ecological niche models. Brazilian Journal of Biology, 2015, 75: S17-S24 [29] 朱耿平, 乔慧捷. Maxent模型复杂度对物种潜在分布区预测的影响. 生物多样性, 2016, 24(10): 1189-1196 [30] 马世炎, 于洪春, 赵奎军, 等. 基于MaxEnt模型的大豆蚜全球潜在地理分布分析. 昆虫学报, 2022, 65(5): 630-637 [31] 肖麒, 章梦婷, 陈炼, 等. 基于生态位模型的外来入侵种克氏原螯虾在中国的适生区预测. 应用生态学报, 2020, 31(1): 309-318 [32] 张丹华, 胡远满, 刘淼, 等. 基于Maxent生态位模型的互花米草在我国沿海的潜在分布. 应用生态学报, 2019, 30(7): 2329-2337 [33] Ma Y, Xiao C. Push-pull effects of three plant secondary metabolites on oviposition of the potato tuber moth, Phthorimaea operculella. Journal of Insect Science, 2013, 13: 128 [34] Smadar G, Haggai P. Presence-absence sequential sampling for potato tuber worm (Lepidoptera: Gelechiidae) on processing tomatoes: Selection of sample sites according to predictable seasonal trends. Journal of Economic Entomology, 1995, 5: 1332-1336 [35] 闫俊杰, 张梦迪, 高玉林. 马铃薯块茎蛾生物学、生态学与综合治理. 昆虫学报, 2019, 62(12): 1469-1482 [36] Xian XQ, Zhao HX, Guo JY, et al. Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change. Journal of Integrative Agriculture, 2023, 22: 2441-2455 [37] Marmion M, Parviainen M, Luoto M, et al. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 2009, 15: 59-69 [38] Araujo MB, Guisan A. Five (or so) challenges for species distribution modelling. Journal of Biogeography, 2006, 33: 1677-1688 [39] Lamsal P, Kumar L, Aryal A, et al. Invasive alien plant species dynamics in the Himalayan region under climate change. Ambio, 2018, 47: 697-710 [40] Uden DR, Allen CR, Angeler DG, et al. Adaptive invasive species distribution models: A framework for modeling incipient invasions. Biological Invasions, 2015, 17: 2831-2850 [41] Bellard C, Bertelsmeier C, Leadley P, et al. Impacts of climate change on the future of biodiversity. Ecology Letters, 2012, 15: 365-377 [42] Barbosa FG, Pillar VD, Palmer AR, et al. Predicting the current distribution and potential spread of the exotic grass Eragrostis plana Nees in South America and identifying a bioclimatic niche shift during invasion. Austral Ecology, 2013, 38: 260-267 |