[1] O'Connor B, Bojinski S, Rsli C, et al. Monitoring global changes in biodiversity and climate is more important than ever as ecological crisis intensifies. Ecological Informatics, 2019, 55: 101033 [2] IPCC. Climate Change 2013: The Physical Science Basis Working Group I to the Fifth Assessment Report. Cambridge, UK: Cambridge University Press, 2013 [3] Li J, Chang H, Liu T, et al. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century. Agricultural and Forest Meteorology, 2019, 275: 243-254 [4] Fitzpatrick M, Gove A, Sanders N, et al. Climate change, plant migration, and range collapse in a global biodiversity hotspot: The Banksia (Proteaceae) of Western Australia. Global Change Biology, 2009, 14: 1337-1352 [5] 李晓辰, 马松梅, 魏博. 气候变化对药用植物刺山柑适宜分布的影响. 石河子大学学报:自然科学版, 2018, 36(2): 176-182 [Li X-C, Ma S-M, Wei B. Effects of climate change on suitable distribution of Capparis spinosa L. Journal of Shihezi University: Natural Science, 2018, 36(2): 176-182] [6] 乔慧捷, 胡军华, 黄继红. 生态位模型的理论基础发展方向与挑战. 中国科学: 生命科学, 2013, 43(11): 915-927 [Qiao H-J, Hu J-H, Huang J-H. The theoretical basis, development direction and challenge of niche model. Scientia Sinica Vitae, 2013, 43(11): 915-927] [7] 段义忠, 鱼慧, 王海涛, 等. 孑遗濒危植物四合木(Tetraena mongolica)的地理分布与潜在适生区预测. 植物科学学报, 2019, 37(3): 337-347 [Duan Y-Z, Yu H, Wang H-T, et al. The geographical distribution and potential habitat prediction of Tetraena mongolica, arelict and endangered plant. Plant Science Journal, 2019, 37(3): 337-347] [8] 王运生. 生态位模型在外来入侵物种风险评估中的应用研究. 博士论文. 长沙: 湖南农业大学, 2007 [Wang Y-S. Application of Niche Model in Risk Assessment of Alien Invasive Species. PhD Thesis. Changsha: Hunan Agricultural University, 2007] [9] 戎战磊. 气候变化对祁连山优势物种分布和植被格局的影响. 博士论文. 兰州: 兰州大学, 2019 [Rong Z-L. Impacts of Climate Change on the Distribution of Dominant Species and Vegetation Pattern in Qilian Mountains. PhD Thesis. Lanzhou: Lanzhou University, 2019] [10] Warren R, Vanderwal J, Price J. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change, 2013, 3: 678-682 [11] Waltari E, Hijmans RJ, Peterson AT, et al. Locating Pleistocene refugia: Comparing phylogeographic and ecological niche model predictions. PLoS One, 2007, 2(6): e563 [12] 孙杰杰, 江波, 朱锦茹, 等. 应用生态位模型预测檫木在浙江省的潜在适生区与主导环境因子. 东北林业大学学报, 2020, 48(2): 1-6 [Sun J-J, Jiang B, Zhu J-R, et al. Application of niche model to predict potential suitable growing areas and dominant environmental factors of Sassafras tzumu in Zhejiang Province. Journal of Northeast Forestry University, 2020, 48(2): 1-6] [13] Zhang K, Yao L, Meng J, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 2018, 634: 1326-1334 [14] 李璇, 李垚, 方炎明. 基于优化的MaxEnt生态位模型预测白栎在中国的潜在分布区. 林业科学, 2018, 54(8): 153-164 [Li X, Li Y, Fang Y-M. Prediction of potential distribution of Quercus fabri in China based on optimized Maxent model. Scientia Silvae Sinicae, 2018, 54(8): 153-164] [15] 邱浩杰, 孙杰杰, 徐达, 等. 基于MaxEnt生态位模型预测鹅掌楸在中国的潜在分布区. 浙江农林大学学报, 2020, 37(1): 1-8 [Qiu H-J, Sun J-J, Xu D, et al. Prediction of potential distribution area of Liriodendron chinense based on MaxEnt model. Journal of Zhejiang Agriculture and Forestry University, 2020, 37(1): 1-8] [16] 张路. MaxEnt最大熵模型在预测物种潜在分布范围方面的应用. 生物学通报, 2015, 50(11): 9-12 [Zhang L. The application of MaxEnt maximum entropy model in predicting the potential distribution range of species. Bulletin of Biology, 2015, 50(11): 9-12] [17] 张德魁, 王继和, 马全林, 等. 油蒿研究综述. 草业科学, 2007, 24(8): 30-35 [Zhang D-K, Wang J-H, Ma Q-L, et al. A review of Artemisia ordosica. Pratacultural Science, 2007, 24(8): 30-35] [18] 肖斌, 白娟娟, 戚磊, 等. 黑沙蒿的资源分布、化学成分及药理活性研究进展. 中国药房, 2016, 27(13): 1862-1864 [Xiao B, Bai J-J, Qi L, et al. Advances in studies on resource distribution, chemical constituents and pharmacological activities of Artemisia ordosica. China Pharmacy, 2016, 27(13): 1862-1864] [19] 苗静, 张克斌, 刘建康, 等. 半干旱区人工封育草地植被生态位研究. 水土保持研究, 2015, 22(4): 342-347 [Miao J, Zhang K-B, Liu J-K, et al. Study on vegetation niche of artificial grassland in semiarid area. Soil and Water Conservation Research, 2015, 22(4): 342-347] [20] 王立群, 陈世璜, 郝利忠. 黑沙蒿生态生物学特性及群落地理分布规律相关性研究. 干旱区资源与环境, 2002, 16(4): 95-98 [Wang L-Q, Chen S-H, Hao L-Z. Study on the ecological and biological characteristics of Artemisia ordosica and its relationship with the geographical distribution of community. Journal of Arid Land Resources and Environment, 2002, 16(4): 95-98] [21] 杨洪晓, 张金屯, 李振东, 等. 毛乌素沙地油蒿(Artemisia ordosica)种群空间格局对比. 生态学报, 2008, 28(5): 1901-1910 [Yang H-X, Zhang J-T, Li Z-D, et al. Comparison of spatial pattern of Artemisia ordosica population in Mu Us sand. Acta Ecologica Sinica, 2008, 28(5): 1901-1910] [22] 韩虹. 过敏性鼻炎可引发嗅觉减退. 人民政协报, 2020-05-06(7) [Han H. Allergic rhinitis can cause hyposmia. People's Political Consultative Conference, 2020-05-06(7)] [23] 王晓艳, 宁慧宇, 韩班布拉,等. 草原地区气传花粉可诱发应变性鼻炎. 基因组学与应用生物学, 2017, 36(7): 2793-2798 [Wang X-Y, Ning H-Y, Han B-B-L, et al. Airborne pollen can induce rhinitis in grassland. Genomics and Applied Biology, 2017, 36(7): 2793-2798] [24] 柳晓燕, 赵彩云, 李飞飞, 等. 基于MaxEnt生态位模型预测红火蚁在中国的适生区. 植物检疫, 2019, 33(6): 70-76 [Liu X-Y, Zhao C-Y, Li F-F, et al. MaxEnt model is used to predict the potential habitat of red imported fire ant (Solenopsis invicta Buren) in China. Plant Quarantine, 2019, 33(6): 70-76] [25] 刘洋, 石娟. 气候变化背景下埃及吹绵蚧在中国的适生区预测. 植物保护, 2020, 46(1): 108-117 [Liu Y, Shi J. Prediction of potential habitat of Amblyzus aegypti in China under climate change. Plant Protection, 2020, 46(1): 108-117] [26] 沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点. 冰川冻土, 2013, 35(5): 1068-1076 [Shen Y-P, Wang G-Y. Key points of recent science on global climate change in the Fifth Assessment Report of IPCC Working Group 1. Journal of Glaciology and Geocryology, 2013, 35(5): 1068-1076] [27] Riahi K, Rao S, Krey V, et al. RCP 8.5: A scenario of comparatively high greenhouse gas emissions. Climatic Change, 2011, 109: 33-57 [28] Jessica BS, Christine RW, Karen VR. Developing macrohabitat models for bats in parks using MaxEnt and testing them with data collected by citizen scientists. International Journal of Biodiversity & Conservation, 2014, 6, doi: 10.5897/IJBC2013.0647 [29] 常红, 刘彤, 王大伟, 等. 气候变化下中国西北干旱区梭梭(Haloxylon ammodendron)潜在分布. 中国沙漠, 2019, 39(1): 110-118 [Chang H, Liu T, Wang D-W, et al. Potential distribution of Haloxylon ammodendron in arid region of northwest China under climate change. Journal of Desert Research, 2019, 39(1): 110-118] [30] 胡菀, 张志勇, 陈陆丹, 等. 末次盛冰期以来观光木的潜在地理分布变迁. 植物生态学报, 2020, 44(1): 44-55 [Hu W, Zhang Z-Y, Chen L-D, et al. Changes of potential geographical distribution of Tsoongiodendron odorum since the last glacial maximum. Chinese Journal of Plant Ecology, 2020, 44(1): 44-55] [31] 王晓娟, 王光剑, 马光良, 等. 基于GIS和MaxEnt生态位模型的合江方竹中国潜在分布区预测. 世界竹藤通讯, 2019, 17(5): 9-15 [Wang X-J, Wang G-J, Ma G-L, et al. Prediction of potential distribution area of Chimonobambusa hejiangensis in China based on GIS and MaxEnt model. World Bamboo and Rattan, 2019, 17(5): 9-15] [32] Li J, Fan G, He Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Science of the Total Environment, 2019, 698: 134141 [33] Brown JL. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 2014, 5: 694-700 [34] 厉静文, 郭浩, 王雨生, 等. 基于MaxEnt生态位模型的胡杨潜在适生区预测. 林业科学, 2019, 55(12): 133-139 [Li J-W, Guo H, Wang Y-S, et al. Prediction of potential suitable area for Populus euphratica based on MaxEnt model. Scientia Silvae Sinicae, 2019, 55(12): 133-139] [35] Swets JA. Measuring the accuracy of diagnostic systems. Science, 1988, 240: 1285-1293 [36] Allen JL, Lendemer JC. Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodiversity and Conservation, 2016, 25: 555-568 [37] 姬柳婷, 郑天义, 陈倩, 等. 北重楼潜在适生区对气候变化的响应及其主导气候因子. 应用生态学报, 2020, 31(1): 89-96 [Ji L-T, Zheng T-Y, Chen Q, et al. Response of potential habitat of Paris polyphylla to climate change and its main climatic factors. Chinese Journal of Applied Ecology, 2020, 31(1): 89-96] [38] 毕晓琼, 赵斯, 王林, 等. 气候变化对牛膝菊在中国潜在适生区的影响. 陕西师范大学学报:自然科学版, 2019, 47(2): 70-75 [Bi X-Q, Zhao S, Wang L, et al. The effect of climate change on the potential habitat of Achyranthes bidentata in China. Journal of Shaanxi Normal University: Natural Science, 2019, 47(2): 70-75] [39] 马松梅, 聂迎彬, 耿庆龙, 等. 气候变化对蒙古扁桃适宜分布范围和空间格局的影响. 植物生态学报, 2014, 38(3): 262-269 [Ma S-M, Nie Y-B, Geng Q-L, et al. Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica.Chinese Journal of Plant Ecology, 2014, 38(3): 262-269] [40] 杨轩. 气候变化对黄土高原作物生产系统产量、水分利用及土壤养分的影响. 博士论文. 兰州: 兰州大学, 2019 [Yang X. Effects of Climate Change on Yield, Water Use and Soil Nutrient of Crop Production System on the Loess Plateau. PhD Thesis. Lanzhou: Lanzhou University, 2019] [41] Ma B, Sun J. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology, 2018, 18: 10 [42] 陈衍如, 谢慧敏, 罗火林, 等. 气候变化对寒兰分布的影响及其分布格局模拟. 应用生态学报, 2019, 30(10): 3419-3425 [Chen Y-R, Xie H-M, Luo H-L, et al. Impacts of climate change on the distribution and distribution pattern simulation of Cymbidium formosanum. Chinese Journal of Applied Ecology, 2019, 30(10): 3419-3425] [43] 张雪芹, 彭莉莉, 林朝晖. 未来不同排放情景下气候变化预估研究进展. 地球科学进展, 2008, 23(2): 174-185 [Zhang X-Q, Peng L-L, Lin C-H. Progress on the projections of future climate change with variable emission scenarios. Advances in Earth Science, 2008, 23(2): 174-185] [44] 李晓辰. 中国温带主要荒漠植物的地理分布格局研究. 硕士论文. 石河子: 石河子大学, 2018 [Li X-C. Study on the Geographical Distribution Pattern of Main Desert Plants in Temperate Zone of China. Master Thesis. Shihezi: Shihezi University, 2018] [45] 李鑫豪, 闫慧娟, 卫腾宙, 等. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应. 植物生态学报, 2019, 43(10): 889-898 [Li X-H, Yan H-J, Wei T-Z, et al. Relative variation of resource use efficiency of Artemisia ordosica in growing season and its response to environmental factors. Chinese Journal of Plant Ecology, 2019, 43(10): 889-898] [46] 张浩, 王新平, 张亚峰, 等. 干旱荒漠区不同生活型植物生长对降雨量变化的响应. 生态学杂志, 2015, 34(7): 1847-1853 [Zhang H, Wang X-P, Zhang Y-F, et al. Responses of plant growth of different life forms to rainfall variation in arid desert region. Chinese Journal of Ecology, 2015, 34(7): 1847-1853] [47] 方精云, 朱江玲, 石岳. 生态系统对全球变暖的响应. 科学通报, 2018, 63(2): 136-140 [Fang J-Y, Zhu J-L, Shi Y. The responses of ecosystems to global warming. Chinese Science Bulletin, 2018, 63(2): 136-140] |