[1] 吕朝燕, 张宝成, 王加真, 等. 桫椤研究进展的可视化分析. 北方园艺, 2018(19): 172-179 [Lyu C-Y, Zhang B-C, Wang J-Z, et al. Visual analysis of the research progress of Alsophila spinulosa. Northern Horticulture, 2018(19): 172-179] [2] 程治英, 陶国达, 许再富. 桫椤濒危原因的探讨. 云南植物研究, 1990, 12(2): 186-190 [Cheng Z-Y, Tao G-D, Xu Z-F. A study on the 2.5m_biological cha-racteristics and the endangering factor of Alsophila spinulosa. Acta Botanica Yunnanica, 1990, 12(2): 186-190] [3] 中国科学院青藏高原综合科学考察队. 横断山脉维管束植物. 北京: 科学出版社, 1993 [Chinese Academy of Sciences Qinghai-Tibet Plateau Comprehensive Scientific Expedition Team. Vascular Plants of the Hengduan Mountains. Beijing: Science Press, 1993] [4] 张宪春, 张丽兵. 中国植物志·蕨类(第6卷第3分册). 北京: 科学出版社, 2004 [Zhang X-C, Zhang L-B. Flora of China·Pteridophytes (Volume 6, Part 3). Beijing: Science Press, 2004] [5] 宗秀虹. 赤水桫椤国家级自然保护区桫椤群落特征及种群动态研究. 硕士论文. 重庆: 西南大学, 2017 [Zong X-H. A Tentative Study on Community Characte-ristics and Population Dynamics of Alsophila spinulata of Chishui Alsophila spinulata National Nature Reserve. Master Thesis. Chongqing: Southwest University, 2017] [6] 王艇, 苏应娟, 李雪雁, 等. 孑遗植物桫椤种群遗传变异的RAPD分析. 生态学报2003, 23(6): 1200-1205 [Wang T, Su Y-J, Li X-Y, et al. RAPD analysis of the genetic variation within populations of a relict tree fern, Alsophila spinulosa (Cyatheaceae). Acta Ecologica Sinica, 2003, 23(6): 1200-1205] [7] 国家中医药管理局《中华本草》编辑委员会. 中华本草(第二册). 上海: 上海科学技术出版社, 1999 [Editorial Committee of “Chinese Materia Medica” of the State Administration of Traditional Chinese Medicine. Chinese Materia Medica (Volume 2). Shanghai: Shanghai Science and Technology Press, 1999] [8] 唐栩. 黄酮类化合物D01抗肿瘤的药理作用研究. 硕士论文. 广州: 中山大学, 2003 [Tang X. The Pharmacological Researches of Flavonoid D01 on Anti-tumor. Master Thesis. Guangzhou: Sun Yat-sen University, 2003] [9] 弓加文, 陈封政, 李书华. 桫椤叶和茎干抑菌活性初探. 安徽农业科学, 2007, 35(33): 10566-10568 [Gong J-W, Chen F-Z, Li S-H. A preliminary study on the antibacterial activity of Alsophila spinulosa leaves and stems. Journal of Anhui Agricultural Sciences, 2007, 35(33): 10566-10568] [10] 李书华, 赵琦, 成英, 等. 桫椤茎中牡荆素的抑菌活性. 食品研究与开发, 2013, 34(14): 4-6 [Li S-H, Zhao Q, Cheng Y, et al. Antimicrobial activities of vitexin from Alsophila spinutosa. Food Research and Development, 2013, 34(14): 4-6] [11] 董六一, 范一菲, 邵旭, 等. 牡荆素对大鼠心肌缺血再灌注损伤诱导细胞凋亡的影响. 中成药, 2011, 33(6): 1041-1044 [Dong L-Y, Fan Y-Y, Shao X, et al. Effects of vitexin on apoptosis induced by myocardial is chemia-reperfusion injury in rats. Chinese Traditional Patent Medicine, 2011, 33(6): 1041-1044] [12] 毕世荣, 苏成端, 徐正兰, 等. 杪椤组织培养的研究. 植物生理学通讯, 1985, 21(1): 38 [Bi S-R, Su C-D, Xu Z-L, et al. Research on tissue culture of Alsophila spinulosa. Plant Physiology Communications, 1985, 21(1): 38] [13] 邬秉左. 桫椤引种栽培初报. 江苏林业科技, 2000, 27(6): 27-32 [Wu B-Z. A preliminary report on the introduction and cultivation of Alsophila spinulosa. Journal of Jiangsu Forestry Science, 2000, 27(6): 27-32] [14] 曾莉莉, 魏德生, 陈德明, 等. 桫椤易地引种与保护地栽培. 中国中药杂志, 1997, 22(2): 16-18 [Zeng L-L, Wei D-S, Chen D-M, et al. Introduction and protected cultivation of Alsophila spinulosa. China Journal of Chinese Materia Medica, 1997, 22(2): 16-18] [15] 程治英, 张风雷, 兰芹英, 等. 桫椤的快速繁殖与种质保存技术的研究. 云南植物研究, 1991, 13(2): 181-188 [Cheng Z-Y, Zhang F-L, Lan Q-Y, et al. Research on the rapid propagation and germplasm preservation technology of Alsophila spinulosa. Yunnan Botanical Research, 1991, 13(2): 181-188] [16] 许斌, 朱文泉, 李培先. 不同气候条件下桫椤在中国的潜在适生区分布. 生态学报, 2020, 40(17): 6105-6117 [Xu B, Zhu W-Q, Li P-X. Potential distributions of Alsophila spinulosa under different climates in China. Acta Ecologica Sinica, 2020, 40(17): 6105-6117] [17] 段义忠, 鱼慧, 王海涛, 等. 孑遗濒危植物四合木的地理分布与潜在适生区预测. 植物科学学报, 2019, 37(3): 337-347 [Duan Y-Z, Yu H, Wang H-T, et al. Geographical distribution and potential suitable regions of endangered relict pliant Tetraena mongolia. Plant Science Journal, 2019, 37(3): 337-347] [18] 王雨生, 王召海, 邢汉发, 等. 基于Maxent模型的珙桐在中国潜在适生区预测. 生态学杂志, 2019, 38(4): 1230-1237 [Wang Y-S, Wang Z-H, Xing H-F, et al. Prediction of potential suitable distribution of Davidia involucrata Baill in China based on Maxent. Chinese Journal of Ecology, 2019, 38(4): 1230-1237] [19] 龚维, 夏青, 陈红锋, 等. 珍稀濒危植物伯乐树的潜在适生区预测. 华南农业大学学报, 2015, 36(4): 98-104 [Gong W, Xia Q, Chen H-F, et al. Prediction of potential distributions of Bretschneidera sinensis, an rare and endangered plant species in China. Journal of South China Agricultural University, 2015, 36(4): 98-104] [20] 罗玫, 王昊, 吕植. 使用大熊猫数据评估2.5m_biomod2和Maxent分布预测模型的表现. 应用生态学报, 2017, 28(12): 4001-4006 [Luo M, Wang H, Lyu Z. Evaluating the performance of species distribution models 2.5m_biomod2 and Maxent using the giant panda distribution data. Chinese Journal of Applied Ecology, 2017, 28(12): 4001-4006] [21] 姜志诚. 气候背景下中国野生亚洲象适宜生境的最大熵模型(Maxent)预测. 硕士论文. 昆明: 云南大学, 2019 [Jiang Z-C. Prediction of Suitable Habitat for Wild Asian Elephant in China Based on Maximum Entropy Model (Maxent) in Climatic Background. Master Thesis. Kunming: Yunnan University, 2019] [22] 热木图拉·阿卜杜克热木, 古再努尔·孜比比拉, 许仲林, 等. 基于生态位模型的艾比湖鹅喉羚生境评价. 生态学报, 2016, 36(13): 4171-4177 [Remutura A, Guzainur Z, Xu Z-L, et al. Assessment of habitat suitability for Gazella subgutturosa in the Ebinur Reserve. Acta Ecologica Sinica, 2016, 36(13): 4171-4177] [23] 莫琪. 蒙古野骆驼的家域特征及栖息地分析研究. 硕士论文. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2017 [Mo Q. Qualitative Study of Home Range and Habitat Analysis of Wild Camel (Came-lus ferus) in Mongolia. Master Thesis. Beijing: Univer-sity of Chinese Academy of Sciences (Institute of Remote Sensing Applications, Chinese Academy of Sciences), 2017] [24] 张琴, 张东方, 吴明丽, 等. 基于生态位模型预测天麻全球潜在适生区. 植物生态学报, 2017, 41(7): 770-778 [Zhang Q, Zhang D-F, Wu M-L, et al. Predicting the global areas for potential distribution of Gas-trodia elata based on ecological niche models. Chinese Journal of Plant Ecology, 2017, 41(7): 770-778] [25] 王莉, 韦翡翡, 成希, 等. 基于Maxent和ArcGIS的定西市蒙古黄芪适宜性区划研究. 中国药房, 2020, 31(3): 321-324 [Wang L, Wei F-F, Cheng X, et al. Study on suitability zoning of Astragalus membranaceus var. mongholicus in Dingxi City based on Maxent and ArcGIS. China Pharmacy, 2020, 31(3): 321-324] [26] 何淑婷, 白碧玉, 但佳惠, 等. 基于Maxent的南丹参在中国的潜在分布区预测及适生性分析. 安徽农业科学, 2014, 42(8): 2311-2314 [He S-T, Bai B-Y, Dan J-H, et al. Prediction distribution areas of Salvia bowletana Dunn. in China based on Maxent and suitabi-lity analysis. Journal of Anhui Agricultural Sciences, 2014, 42(8): 2311-2314] [27] UNECE. Shared Socioeconomic Pathways (SSPs) [EB/OL]. (2019-05-15)[2020-11-06]. https://wikimili.com/en/Shared_Socioeconomic_Pathways [28] Van Vuuren DP, Riahi K, Moss RH, et al. A proposal for a snew scenario framework to support research and assessment in different climate research communities. Global Environmental Change, 2012, 22: 21-35 [29] 张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述. 气候变化研究进展, 2019, 15(5): 519-525 [Zhang L-X, Chen X-L, Xin X-G. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Climate Change Research, 2019, 15(5): 519-525] [30] Hausfather Z. Explainer: How ‘Shared Socioeconomic Pathways’ Explore Future Climate Change [EB/OL]. (2018-04-11) [2020-11-06]. https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change [31] Riahi K. The Shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 2017, 42: 153-168 [32] Phillips SJ, Anderson RP, Schapire RE, et al. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190: 231-259 [33] Phillips SJ, Dudik M. Modeling of species distributions with Maxent: New extensions and a comprehensive eva-luation. Ecography, 2008, 31: 161-175 [34] Graham MH. Confronting multicollinearity in ecological multiple regression. Ecology, 2003, 84: 2809-2815 [35] Yang XQ, Kushwaha SPS, Saran S, et al. Maxent mode-ling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 2013, 51: 83-87 [36] Peterson AT, Cohoon KP. Sensitivity of distributional prediction algorithms to geographic data completeness. Ecological Modelling, 1999, 117: 159-164 [37] Merow C, Smith MJ, Jr Silander JA. A practical guide to Maxent for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 2013, 36: 1058-1069 [38] Peterson AT, Papeş M, Eaton M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography, 2007, 30: 550-560 [39] Moreno R, Zamora R, Molina JR, et al. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Ecological Informatics, 2011, 6: 364-370 [40] Flory AR, Kumar S, Stohlgren TJ, et al. Environmental conditions associated with bat white-nose syndrome mortality in the northeastern United States. Journal of Applied Ecology, 2012, 49: 680-689 [41] Brismar J. Understanding receiver-operating-characteristic curves: A graphic approach. AJR. American Journal of Roentgenology, 1991, 157: 1119-1121 [42] Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 1982, 143: 29-36 [43] 姜大膀, 富元海. 2 ℃全球变暖背景下中国未来气候变化预估. 大气科学, 2012, 36(2): 234-246 [Jiang D-B, Fu Y-H. Climate change over China with a 2 ℃ global warming. Chinese Journal of Atmospheric Sciences, 2012, 36(2): 234-246] |