[1] Bates OK, Bertelsmeier C. Climatic niche shifts in introduced species. Current Biology, 2021, 31: R1252-R1266 [2] Liu C, Wolter C, Courchamp F, et al. Biological invasions reveal how niche change affects the transferability of species distribution models. Ecology, 2022, 103: e3719 [3] Hill MP, Gallardo B, Terblanche JS. A global assessment of climatic niche shifts and human influence in insect invasions. Global Ecology and Biogeography, 2017, 26: 679-689 [4] Liu C, Wolter C, Xian W, et al. Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117: 23643-23651 [5] Hutchinson GE. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 1957, 22: 415-427 [6] Blonder B, Lamanna C, Violle C, et al. The n-dimensional hypervolume. Global Ecology and Biogeography, 2014, 23: 595-609 [7] Blonder B, Morrow CB, Maitner B, et al. New approaches for delineating n-dimensional hypervolumes. Methods in Ecology and Evolution, 2018, 9: 305-319 [8] Elith JH, Graham CP, Anderson R, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2006, 29: 129-151 [9] Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190: 231-259 [10] Warren DL, Wright AN, Seifert SN, et al. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diversity and Distributions, 2014, 20: 334-343 [11] 朱耿平, 乔慧捷. Maxent模型复杂度对物种潜在分布区预测的影响. 生物多样性, 2016, 24(10): 1189-1196 [12] Tinsley JB. An ants’-nest coccid from New Mexico. The Canadian Entomologist, 1898, 30: 47-48 [13] Zhou AM, Lu YY, Zeng L, et al. Effects of honeydew of Phenacoccus solenopsis on foliar foraging by Solenopsis invcta (Hymenoptera: Formicidae). Sociobiology, 2012, 59: 71-79 [14] Nagrare VS, Kranthi S, Biradar VK, et al. Widespread infestation of the exotic mealybug species, Phenacoccus solenopsis (Tinsley) (Hemiptera: Pseudococcidae), on cotton in India. Bulletin of Entomological Research, 2009, 99: 537-541. [15] Fuchs TW, Stewart JW, Minzenmayer R, et al. First record of Phenacoccus solenopsis Tinsley in cultivated cotton in the United States. Southwestern Entomologist, 1991, 16: 215-221 [16] Abbas G, Arif MJ, Saeed S. Systematic status of a new species of the genus Phenacoccus ockerell (Pseudococcidae), a serious pest of cotton, Gossypium hirsutum L. Pakistan. Pakistan Entomologist, 2005, 27: 83-84 [17] Hodgson C, Abbas G, Arif MJ, et al. Phenacoccus solenopsis Tinsley (Sternorrhyncha: Coccoidea: Pseudococcidae), an invasive mealybug damaging cotton in Pakistan and India, with a discussion on seasonal morphological variation. Zootaxa, 2008, 1913: 1-35 [18] 农业农村部. 2009年农业部 国家质量监督检验检疫总局公告 第1147号[EB/OL]. (2009-02-09)[2023-04-14]. http://www.moa.gov.cn/govpublic/ZZYGLS/201006/t20100606_1534246.htm [19] Waqas MS, Shi Z, Yi TC, et al. Biology, ecology, and management of cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Pest Management Science, 2021, 77: 5321-5333 [20] Wei J, Zhang H, Zhao W, et al. Niche shifts and the potential distribution of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) under climate change. PLoS One, 2017, 12(7): e0180913 [21] 王玉生. 扶桑绵粉蚧在中国的地理分布与遗传结构及其寄生蜂的地理分布格局研究. 博士论文. 北京: 中国农业科学院, 2019 [22] Wang YS, Dai TM, Hu T, et al. Range expansion of the invasive cotton mealybug, Phenacoccus solenopsis Tinsley: An increasing threat to agricultural and horticultural crops in China. Journal of Integrative Agriculture, 2020, 19: 881-885 [23] 徐海根, 强胜. 中国外来入侵生物 修订版. 北京: 科学出版社, 2018: 815-818 [24] Gebregergis Z. Incidence of a new pest, the cotton mealybug Phenacoccus solenopsis Tinsley, on sesame in North Ethiopia. International Journal of Zoology, 2018, 2018: 1-7 [25] Tong H, Yan AO, Li Z, et al. Invasion biology of the cotton mealybug, Phenacoccus solenopsis Tinsley: Current knowledge and future directions. Journal of Integrative Agriculture, 2019, 18: 758-770 [26] Aroua K, Kaydan MB, Ercan C, et al. First Record of Phenacoccus solenopsis Tinsley (Hemiptera: Coccoidea: Pseudococcidae) in Algerial. Entomological News, 2020, 129: 63-66 [27] Ricupero M, Biondi A, Russo A, et al. The cotton mealybug is spreading along the Mediterranean: First pest detection in Italian Tomatoes. Insects, 2021, 12: 675 [28] Macharia I, Kibwage P, Heya HM, et al. New records of scale insects and mealybugs (Hemiptera: Coccomorpha) in Kenya. EPPO Bulletin, 2021, 51: 639-647 [29] El Aalaoui M, Sbaghi M. First record of the mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) and its seven parasitoids and five predators in Morocco. EPPO Bulletin, 2021, 51: 299-304 [30] 董瀛谦, 李娟, 潘佳亮, 等. 我国林业检疫性有害生物发生动态分析. 植物检疫, 2019, 33(6): 15-19 [31] 农业农村部. 2022年关于印发《全国农业植物检疫性有害生物分布行政区名录》的通知[EB/OL]. (2022-07-01)[2023-04-14]. https://www.moa.gov.cn/govpublic/ZZYGLS/202207/t20220707_6404284.htm [32] Hijmans RJ, Cameron SE, Parra JL, et al. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 2005, 25: 1965-1978 [33] Petitpierre B, Kueffer C, Broennimann O, et al. Climatic niche shifts are rare among terrestrial plant invaders. Science, 2012, 335: 1344-1348 [34] Pack KE, Mieszkowska N, Rius M. Rapid niche shifts as drivers for the spread of a non-indigenous species under novel environmental conditions. Diversity and Distributions, 2022, 28: 596-610 [35] Zhang Z, Mammola S, McLay CL, et al. To invade or not to invade? Exploring the niche-based processes underlying the failure of a biological invasion using the invasive Chinese mitten crab. Science of the Total Environment, 2020, 728: 138815 [36] Mammola S, Cardoso P. Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods in Ecology and Evolution, 2020, 11: 986-995 [37] Carvalho JC, Cardoso P. Decomposing the causes for niche differentiation between species using hypervolumes. Frontiers in Ecology and Evolution, 2020, 8: 243 [38] Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190: 231-259 [39] Muscarella R, Galante PJ, Soley-Guardia M, et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution, 2014, 5: 1198-1205 [40] Warren DL, Seifert SN. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 2011, 21: 335-342 [41] Cao Y, deWalt RE, Robinson JL, et al. Using Maxent to model the historic distributions of stonefly species in Illinois streams: The effects of regularization and threshold selections. Ecological Modelling, 2013, 259: 30-39 [42] Liu C, White M, Newell G. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 2013, 40: 778-789 [43] Zhao Y, Deng X, Xiang W, et al. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Ecological Informatics, 2021, 64: 101393 [44] McIntyre S, Rangel EF, Ready PD, et al. Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America. Parasites & Vectors, 2017, 10: 1-15 [45] Strubbe D, Broennimann O, Chiron F, et al. Niche conservatism in non-native birds in Europe: Niche unfilling rather than niche expansion. Global Ecology and Biogeo-graphy, 2013, 22: 962-970 [46] Early R, Sax DF. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Global Ecology and Biogeography, 2014, 23: 1356-1365 [47] Guo WY, Lambertini C, Li XZ, et al. Invasion of old world Phragmites australis in the new world: Precipitation and temperature patterns combined with human influences redesign the invasive niche. Global Change Biology, 2013, 19: 3406-3422 [48] 徐家文, 史家浩, 任强, 等. 基于BIOCLIM模型的扶桑绵粉蚧在中国的适生性分析. 湖北农业科学, 2015, 54(11): 2631-2633 [49] 马骏, 胡学难, 彭正强, 等. 基于CLIMEX模型的扶桑绵粉蚧在中国潜在地理分布预测. 植物检疫, 2011, 25(1): 5-8 [50] Wang Y, Watson GW, Zhang R. The potential distribution of an invasive mealybug Phenacoccus solenopsis and its threat to cotton in Asia. Agricultural and Forest Entomology, 2010, 12: 403–416 [51] Phillips SJ, Dudík M. Modeling of species distributions with Maxent: New extensions and a comprehensive eva-luation. Ecography, 2008, 31: 161-175 [52] Hao T, Elith J, Lahoz-Monfort JJ, et al. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography, 2020, 43: 549-558 [53] 王飞飞, 朱艺勇, 黄芳, 等. 温度对扶桑绵粉蚧生长发育的影响. 昆虫学报, 2014, 57(4): 436-442 |