应用生态学报 ›› 2023, Vol. 35 ›› Issue (5): 1223-1232.doi: 10.13287/j.1001-9332.202405.007
王悦桐1,2, 张军周1,2*, 刘俊俊1,2, 王丽娟1,2, 李玉麟1,2
收稿日期:
2023-11-17
接受日期:
2024-03-15
出版日期:
2024-05-18
发布日期:
2024-11-18
通讯作者:
*E-mail: zhangjz@lzu.edu.cn
作者简介:
王悦桐, 女, 1998年生, 硕士研究生。主要从事树轮生态学研究。E-mail: wangyuetong21@lzu.edu.cn
基金资助:
WANG Yuetong1,2, ZHANG Junzhou1,2*, LIU Junjun1,2, WANG Lijuan1,2, LI Yulin1,2
Received:
2023-11-17
Accepted:
2024-03-15
Online:
2024-05-18
Published:
2024-11-18
摘要: 树木径向生长是森林固碳的主要方式,明确树木生长动态及其与环境要素的响应关系对于预测气候变化背景下森林固碳能力具有重要意义。针叶树生长对气候变化非常敏感,其生长动态能够快速响应气候变化。本文收集了1975—2023年的99篇文献,评述了外源因素(温度、水分和光周期)和内在因素(树龄、树种)对针叶树形成层活动和径向生长的影响及其机制。结果表明:气候变暖可能会导致温带和北方针叶树木质部分化的各阶段开始时间提前,生长停止时间推迟;水分条件参与调控形成层活动的开始并通过影响水势和细胞膨压进而调节树木生长;光周期除了可以参与调节生长开始、结束时间外,也对最大生长速率发生时间产生重要影响。未来气候变暖可能会使北方针叶树生长季延长、生长量增加,并使森林向更高海拔或高纬度地区迁移。同时,未来降水格局改变以及温度升高导致的蒸散发加剧可能会使干旱区树木生长季提前结束,生长速率下降。在未来研究中,还需进一步开发树木生长过程模型,量化径向生长与气候要素的关系,以便进一步明确树木生长对气候要素响应的生理机制。
王悦桐, 张军周, 刘俊俊, 王丽娟, 李玉麟. 针叶树形成层活动及径向生长监测研究进展[J]. 应用生态学报, 2023, 35(5): 1223-1232.
WANG Yuetong, ZHANG Junzhou, LIU Junjun, WANG Lijuan, LI Yulin. Research progress on cambium activity and radial growth dynamics monitoring of coniferous species[J]. Chinese Journal of Applied Ecology, 2023, 35(5): 1223-1232.
[1] 张凤钰. “双碳”目标下企业绿色技术创新发展研究. 中国国情国力, 2023(1): 52-55 [2] Menzel A, Fabian P. Growing season extended in Europe. Nature, 1999, 397: 659 [3] Fu YH, Zhao H, Piao S, et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature, 2015, 526: 104-107 [4] Huang JG, Ma Q, Rossi S, et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117: 20645-20652 [5] Fatichi S, Leuzinger S, Körner C. Moving beyond photosynthesis: From carbon source to sink-driven vegetation modeling. New Phytologist, 2014, 201: 1086-1095 [6] De Micco V, Carrer M, Rathgeber CBK, et al. From xylogenesis to tree rings: Wood traits to investigate tree response to environmental changes. IAWA Journal, 2019, 40: 155-182 [7] Pandey S. Climatic influence on tree wood anatomy: A review. Journal of Wood Science, 2021, 67: 24 [8] 韩艳刚, 周旺明, 齐麟, 等. 长白山树木径向生长对气候因子的响应. 应用生态学报, 2019, 30(5): 1513-1520 [9] Zhang J, Gou X, Rademacher T, et al. Interaction of age and elevation on xylogenesis in Juniperus przewalskii in a cold and arid region. Agricultural and Forest Meteo-rology, 2023, 337: 109480 [10] Begum S, Kudo K, Rahman MH, et al. Climate change and the regulation of wood formation in trees by temperature. Trees, 2018, 32: 3-15 [11] Castagneri D, Fonti P, von Arx G, et al. How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies. Annals of Botany, 2017: mcw274 [12] 王玲玲, 勾晓华, 夏敬清, 等. 树木形成层活动及其影响因素研究进展. 应用生态学报, 2021, 32(10): 3761-3770 [13] Mu W, Wu X, Camarero JJ, et al. Photoperiod drives cessation of wood formation in northern conifers. Global Ecology and Biogeography, 2023, 32: 603-617 [14] Delpierre N, Lireux S, Hartig F, et al. Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers. Global Change Biology, 2019, 25: 1089-1105 [15] Guada G, Vázquez-Ruiz RA, García-González I. Meteo-rological conditions control the cessation rather than the beginning of wood formation in a sub-Mediterranean ring-porous oak. Agricultural and Forest Meteorology, 2020, 281: 107833 [16] 李明明, 李刚. 贺兰山地区植被冠层物候与树干形成层物候的关系. 应用生态学报, 2021, 32(2): 495-502 [17] Rossi S, Deslauriers A, Anfodillo T, et al. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia, 2007, 152: 1-12 [18] Rossi S, Deslauriers A, Griçar J, et al. Critical tempera-tures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 2008, 17: 696-707 [19] Rossi S, Morin H, Deslauriers A. Causes and correlations in cambium phenology: Towards an integrated framework of xylogenesis. Journal of Experimental Botany, 2012, 63: 2117-2126 [20] Rossi S, Deslauriers A, Anfodillo T, et al. Age-depen-dent xylogenesis in timberline conifers. New Phytologist, 2008, 177: 199-208 [21] Deslauriers A, Rossi S, Anfodillo T, et al. Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology, 2008, 28: 863-871 [22] Lugo JB, Deslauriers A, Rossi S. Duration of xylogenesis in black spruce lengthened between 1950 and 2010. Annals of Botany, 2012, 110: 1099-1108 [23] Zhang J, Gou X, Pederson N, et al. Cambial phenology in Juniperus przewalskii along different altitudinal gra-dients in a cold and arid region. Tree Physiology, 2018, 38: 840-852 [24] Saderi S, Rathgeber CBK, Rozenberg P, et al. Pheno-logy of wood formation in larch (Larix decidua Mill.) trees growing along a 1000-m elevation gradient in the French Southern Alps. Annals of Forest Science, 2019, 76: 89 [25] Moser L, Fonti P, Buntgen U, et al. Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiology, 2010, 30: 225-233 [26] Miller TW, Stangler DF, Larysch E, et al. Longer and faster: Intra-annual growth dynamics of Douglas fir outperform Norway spruce and silver fir over wide climatic gradients. Agricultural and Forest Meteorology, 2022, 321: 108970 [27] Rossi S, Girard MJ, Morin H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Global Change Biology, 2014, 20: 2261-2271 [28] Zhang J, Gou X, Manzanedo RD, et al. Cambial phenology and xylogenesis of Juniperus przewalskii over a climatic gradient is influenced by both temperature and drought. Agricultural and Forest Meteorology, 2018, 260-261: 165-175 [29] Rossi S, Anfodillo T, čufar K, et al. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 2016, 22: 3804-3813 [30] Begum S, Nakaba S, Yamagishi Y, et al. Regulation of cambial activity in relation to environmental conditions: Understanding the role of temperature in wood formation of trees. Physiologia Plantarum, 2013, 147: 46-54 [31] Oribe Y, Funada R, Kubo T. Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees, 2003, 17: 185-192 [32] Ursache R, Nieminen K, Helariutta Y. Genetic and hormonal regulation of cambial development. Physiologia Plantarum, 2013, 147: 36-45 [33] Stals H, Inzé D. When plant cells decide to divide. Trends in Plant Science, 2001, 6: 359-364 [34] Proseus TE, Ortega JKE, Boyer JS. Separating growth from elastic deformation during cell enlargement. Plant Physiology, 1999, 119: 775-784 [35] Proseus TE, Zhu G, Boyer JS. Turgor, temperature and the growth of plant cells: Using Chara corallina as a model system. Journal of Experimental Botany, 2000, 51: 1481-1494 [36] Körner C. A re-assessment of high elevation treeline positions and their explanation. Oecologia, 1998, 115: 445-459 [37] Simard S, Giovannelli A, Treydte K, et al. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiology, 2013, 33: 913-923 [38] Hoch G, Körner C. The carbon charging of pines at the climatic treeline: A global comparison. Oecologia, 2003, 135: 10-21 [39] 苏军德, 勾晓华, 曹宗英, 等. 祁连圆柏光合作用日变化特征及其与生理生态因子的关系. 西北植物学报, 2011, 31(5): 1011-1017 [40] Zhang J, Gou X, Zhang Y, et al. Forward modeling analyses of Qilian Juniper (Sabina przewalskii) growth in response to climate factors in different regions of the Qilian Mountains, northwestern China. Trees, 2016, 30: 175-188 [41] Takahashi K, Koike S. Altitudinal differences in bud burst and onset and cessation of cambial activity of four subalpine tree species. Landscape and Ecological Engineering, 2014, 10: 349-354 [42] Mäkelä A, Hari P, Berninger F, et al. Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature. Tree Physiology, 2004, 24: 369-376 [43] Rossi S, Morin H, Deslauriers A, et al. Predicting xylem phenology in black spruce under climate warming. Global Change Biology, 2011, 17: 614-625 [44] Li X, Liang E, Gričar J, et al. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Science Bulletin, 2017, 62: 804-812 [45] Malik R, Rossi S, Sukumar R. Variations in the timing of different phenological stages of cambial activity in Abies pindrow (Royle) along an elevation gradient in the north-western Himalaya. Dendrochronologia, 2020, 59: 125660 [46] Plomion C, Leprovost G, Stokes A. Wood formation in trees. Plant Physiology, 2001, 127: 1513-1523 [47] Stinziano JR, Way DA. Combined effects of rising [CO2] and temperature on boreal forests: Growth, physiology and limitations. Botany, 2014, 92: 425-436 [48] Malik R, Rossi S, Sukumar R. Cambial phenology in Abies pindrow (Pinaceae) along an altitudinal gradient in northwestern Himalaya. IAWA Journal, 2020, 41: 186-201 [49] Ren P, Ziaco E, Rossi S, et al. Growth rate rather than growing season length determines wood biomass in dry environments. Agricultural and Forest Meteorology, 2019, 271: 46-53 [50] Cocozza C, Palombo C, Tognetti R, et al. Monitoring intra-annual dynamics of wood formation with microcores and dendrometers in Picea abies at two different altitudes. Tree Physiology, 2016, 36: 832-846 [51] Fuseler JW. Temperature dependence of anaphase chromosome velocity and microtubule depolymerization. Journal of Cell Biology, 1975, 67: 789-800 [52] Cuny HE, Fonti P, Rathgeber CBK, et al. Couplings in cell differentiation kinetics mitigate air temperature influence on conifer wood anatomy. Plant, Cell & Environment, 2019, 42: 1222-1232 [53] Rossi S, Cairo E, Krause C, et al. Growth and basic wood properties of black spruce along an alti-latitudinal gradient in Quebec, Canada. Annals of Forest Science, 2015, 72: 77-87 [54] Ford KR, Harrington CA, St. Clair JB. Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species’ range: Modeling diameter-growth cessation in coast Douglas-fir. Global Change Biology, 2017, 23: 3348-3362 [55] Cabon A, Peters RL, Fonti P, et al. Temperature and water potential co-limit stem cambial activity along a steep elevational gradient. New Phytologist, 2020, 226: 1325-1340 [56] Ziaco E, Biondi F, Rossi S, et al. Environmental dri-vers of cambial phenology in Great Basin bristlecone pine. Tree Physiology, 2016, 36: 818-831 [57] Ren P, Rossi S, Gricar J, et al. Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? Annals of Botany, 2015, 115: 629-639 [58] Zhang J, Gou X, Alexander MR, et al. Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. Catena, 2021, 196: 104936 [59] Turcotte A, Morin H, Krause C, et al. The timing of spring rehydration and its relation with the onset of wood formation in black spruce. Agricultural and Forest Meteo-rology, 2009, 149: 1403-1409 [60] 高佳妮. 亚洲夏季风西北边缘区树木形成层活动及木质部解剖特征监测研究. 博士论文. 兰州: 中国科学院大学, 2022 [61] Güney A, Kerr D, Sökücü A, et al. Cambial activity and xylogenesis in stems of Cedrus libani A. Rich at different altitudes. Botanical Studies, 2015, 56: 20 [62] Larysch E, Stangler DF, Nazari M, et al. Xylem phenology and growth response of European beech, Silver fir and Scots pine along an elevational gradient during the extreme drought year 2018. Forests, 2021, 12: 75 [63] Belokopytova LV, Fonti P, Babushkina EA, et al. Evidences of different drought sensitivity in xylem cell developmental processes in South Siberia Scots pines. Forests, 2020, 11: 1294 [64] Larysch E, Stangler DF, Puhlmann H, et al. The 2018 hot drought pushed conifer wood formation to the limit of its plasticity: Consequences for woody biomass production and tree ring structure. Plant Biology, 2022, 24: 1171-1185 [65] Abe H, Nakai T. Effect of the water status within a tree on tracheid morphogenesis in Cryptomeria japonica D. Don. Trees, 1999, 14: 124-129 [66] Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 19-36 [67] Aloni R. Foliar and axial aspects of vascular differentiation: Hypotheses and evidence. Journal of Plant Growth Regulation, 2001, 20: 22-34 [68] van der Maaten-Theunissen M, Kahle HP, van der Maaten E. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Annals of Forest Science, 2013, 70: 185-193 [69] Stangler DF, Kahle HP, Raden M, et al. Effects of intra-seasonal drought on kinetics of tracheid differentiation and seasonal growth dynamics of Norway Spruce along an elevational gradient. Forests, 2021, 12: 274 [70] Zhang J, Alexander MR, Gou X, et al. Extended xylogenesis and stem biomass production in Juniperus prze-walskii Kom. during extreme late-season climatic events. Annals of Forest Science, 2020, 77: 99 [71] Farooq TH, Yasmeen S, Shakoor A, et al. Xylem anatomical responses of Larix gmelinii and Pinus sylvestris influenced by the climate of Daxing’an Mountains in Northeastern China. Frontiers in Plant Science, 2023, 14: 1095888 [72] Zweifel R, Zimmermann L, Zeugin F, et al. Intra-annual radial growth and water relations of trees: Implications towards a growth mechanism. Journal of Experimental Botany, 2006, 57: 1445-1459 [73] Hansen J, Beck E. The fate and path of assimilation products in the stem of 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees, 1990, 4: 16-21 [74] Barbaroux C, Bréda N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiology, 2002, 22: 1201-1210 [75] Muller B, Pantin F, Génard M, et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany, 2011, 62: 1715-1729 [76] Huang JvG, Bergeron Y, Zhai L, et al. Variation in intra-annual radial growth (xylem formation) of Picea mariana (Pinaceae) along a latitudinal gradient in western Quebec, Canada. American Journal of Botany, 2011, 98: 792-800 [77] Cuny HE, Rathgeber CBK, Frank D, et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 2015, 1: 15160 [78] Jackson SD. Plant responses to photoperiod. New Phyto-logist, 2009, 181: 517-531 [79] Edwards KD, Takata N, Johansson M, et al. Circadian clock components control daily growth activities by modu-lating cytokinin levels and cell division-associated gene expression in Populus trees. Plant, Cell & Environment, 2018, 41: 1468-1482 [80] Singh RK, Svystun T, AlDahmash B, et al. Photoperiod-and temperature-mediated control of phenology in trees: A molecular perspective. New Phytologist, 2017, 213: 511-524 [81] Rossi S, Deslauriers A, Anfodillo T, et al. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist, 2006, 170: 301-310 [82] Miller TW, Stangler DF, Larysch E, et al. Plasticity of seasonal xylem and phloem production of Norway spruce along an elevational gradient. Trees, 2020, 34: 1281-1297 [83] Oladi R, Pourtahmasi K, Eckstein D, et al. Seasonal dynamics of wood formation in Oriental beech (Fagus orientalis Lipsky) along an altitudinal gradient in the Hyrcanian forest, Iran. Trees, 2011, 25: 425-433 [84] Cartenì F, Deslauriers A, Rossi S, et al. The physiolo-gical mechanisms behind the earlywood-to-latewood transition: A process-based modeling approach. Frontiers in Plant Science, 2018, 9: 1053 [85] Gruber A, Wieser G, Oberhuber W. Intra-annual dynamics of stem CO2 efflux in relation to cambial activity and xylem development in Pinus cembra. Tree Physio-logy, 2009, 29: 641-649 [86] Seo JW, Eckstein D, Jalkanen R, et al. Estimating the onset of cambial activity in Scots pine in northern Finland by means of the heat-sum approach. Tree Physio-logy, 2008, 28: 105-112 [87] Thibeault-Martel M, Krause C, Morin H, et al. Cambial activity and intra-annual xylem formation in roots and stems of Abies balsamea and Picea mariana. Annals of Botany, 2008, 102: 667-674 [88] Piper FI, Cavieres LA, Reyes-Díaz M, et al. Carbon sink limitation and frost tolerance control performance of the tree Kageneckia angustifolia D. Don (Rosaceae) at the treeline in central Chile. Plant Ecology, 2006, 185: 29-39 [89] 张军周. 祁连山树木形成层活动及年内径向生长动态监测研究. 博士论文. 兰州: 兰州大学, 2018 [90] Chen L, Huang JG, Ma Q, et al. Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Global Change Biology, 2018, 24: 3969-3975 [91] Elmendorf SC, Henry GHR, Hollister RD, et al. Experi-ment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 448-452 [92] Roitberg E, Shoshany M. Can spatial patterns along climatic gradients predict ecosystem responses to climate change? Experimenting with reaction-diffusion simulations. PLoS ONE, 2017, 12(4): e0174942 [93] Li X, Liang E, Gricar J, et al. Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiology, 2013, 33: 48-56 [94] Zeng Q, Rossi S, Yang B. Effects of age and size on xylem phenology in two conifers of Northwestern China. Frontiers in Plant Science, 2018, 8: 2264 [95] Li X, Rossi S, Liang E. The onset of xylogenesis in Smith fir is not related to outer bark thickness. American Journal of Botany, 2019, 106: 1386-1391 [96] Li W, Jiang Y, Dong M, et al. Species-specific growth-climate responses of Dahurian larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris var. mongolica) in the Greater Khingan Range, northeast China. Dendrochronologia, 2021, 65: 125803 [97] Chen L, Rossi S, Deslauriers A, et al. Contrasting stra-tegies of xylem formation between black spruce and balsam fir in Quebec, Canada. Tree Physiology, 2019, 39: 747-754 [98] Del Castillo EM, Prislan P, Gričar J, et al. Challenges for growth of beech and co-occurring conifers in a changing climate context. Dendrochronologia, 2018, 52: 1-10 [99] 张邵康. 氮添加和增温对北半球中高纬度地区四种典型树种生长的影响. 博士论文. 广州: 中国科学院大学, 2018 |
[1] | 解萍萍, 张博奕, 董一博, 吕鹏程, 杜明超, 张先亮. 华北落叶松和白杄径向生长对干旱的生态弹性差异 [J]. 应用生态学报, 2023, 34(7): 1779-1786. |
[2] | 杜英军, 李士杰, 王丽, 杨帅, 贾欣萤, 田广宇, 曾凡锁, 辛颖. 东北地区帽儿山种源实验林区不同种源水曲柳径向生长对气候的响应 [J]. 应用生态学报, 2023, 35(5): 1159-1168. |
[3] | 张子航, 王恒, 贾建恒, 孙昊慷, 韩佳轩, 郭明明. 不同密度华北落叶松径向生长对干旱事件的响应 [J]. 应用生态学报, 2023, 35(5): 1169-1176. |
[4] | 李君, 刘泽, 王牌, 杨睿, 史丰鸣, 邓杰, 王国严, 石松林. 西藏珠峰地区乔松径向生长对气候变化的响应 [J]. 应用生态学报, 2023, 35(5): 1205-1213. |
[5] | 王恒, 王小雪, 贾建恒, 张子航, 郭明明. 华北落叶松径向生长对升温突变的响应 [J]. 应用生态学报, 2023, 34(10): 2629-2636. |
[6] | 张慧, 付培立, 林友兴, 格桑, 杨建强, 格茸取扎, 范泽鑫. 滇西北白马雪山长苞冷杉和大果红杉年内径向生长动态及其对环境因子的响应 [J]. 应用生态学报, 2022, 33(11): 2881-2888. |
[7] | 贾汉森, 高峻, 张劲松, 孟平, 孙守家. 太行山南麓不同径级栓皮栎生长对气候要素及干旱事件的响应 [J]. 应用生态学报, 2021, 32(8): 2857-2865. |
[8] | 刘可祥, 张同文, 张瑞波, 喻树龙, 黄力平, 姜盛夏, 胡东宇. 不同树高处树轮密度变化特征及其对气候的响应 [J]. 应用生态学报, 2021, 32(2): 503-512. |
[9] | 李明明, 李刚. 贺兰山地区植被冠层物候与树干形成层物候的关系 [J]. 应用生态学报, 2021, 32(2): 495-502. |
[10] | 郭雪梅, 王兆鹏, 张楠, 张冬有. 樟子松和落叶松径向生长对气候变化的响应 [J]. 应用生态学报, 2021, 32(10): 3405-3414. |
[11] | 赵莹, 蔡立新, 靳雨婷, 李俊霞, 崔迪, 陈振举. 暖干化加剧东北半干旱地区油松人工林径向生长的水分限制 [J]. 应用生态学报, 2021, 32(10): 3459-3467. |
[12] | 刘伟韬, 李俊霞, 赵莹, 韩勍, 侯森, 张敬远, 李丰, 陈振举. 水热耦合对沈阳地区油松木质部生长的影响 [J]. 应用生态学报, 2021, 32(10): 3468-3476. |
[13] | 毛沂新, 张慧东, 王睿照, 颜廷武, 魏文俊, 云丽丽, 潘文利, 尤文忠. 辽东山区蒙古栎径向生长对林分密度和气候因子的响应 [J]. 应用生态学报, 2021, 32(10): 3477-3486. |
[14] | 高佳妮, 杨保, 秦春. 树木年内径向生长对干旱事件的响应——以贺兰山油松为例 [J]. 应用生态学报, 2021, 32(10): 3505-3511. |
[15] | 孟盛旺, 杨风亭, 戴晓琴, 王辉民. 杉木径向生长动态及其对季节性干旱的响应 [J]. 应用生态学报, 2021, 32(10): 3521-3530. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||