[1] 张慧慧, 白云玉, 张英洁, 等. 长白山苔原带凋落物生态化学计量特征及其对模拟氮沉降的响应. 生态学报, 2022, 42(21): 8795-8808 [2] 刘倩, 王书丽, 邓邦良, 等. 武功山山地草甸不同海拔凋落物-土壤碳、氮、磷含量及其生态化学计量特征. 应用生态学报, 2018, 29(5): 1535-1541 [3] 陈婵, 张仕吉, 李雷达, 等. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征. 植物生态学报, 2019, 43(8): 658-671 [4] 张楠, 杨智杰, 胥超, 等. 中亚热带森林转换对凋落物养分归还及养分利用效率的影响. 应用生态学报, 2022, 33(2): 321-328 [5] Leff JW, Wieder WR, Taylor PG, et al. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Global Change Biology, 2012, 18: 2969-2979 [6] Watanabe T, Fukuzawa K, Shibata H. Temporal changes in litterfall, litter decomposition and their chemical composition in Sasa dwarf bamboo in a natural forest ecosystem of northern Japan. Journal of Forest Research, 2013, 18: 129-138 [7] 王翠娟, 刘小飞, 杨柳明, 等. 中亚热带米槠人工林土壤微生物残体碳对凋落物和根系碳输入的响应. 应用生态学报, 2024, 35(1): 177-185 [8] 国家林业和草原局. 中国森林资源概况(2014—2018). 北京: 中国林业出版社, 2019 [9] Yu Z, Zhao H, Liu S, et al. Mapping forest type and age in China’s plantations. Science of the Total Environment, 2020, 744: 140790 [10] 福建省森林资源管理总站. 福建省第八次全国森林资源清查及森林资源状况调查报告. 福建林业, 2014(2): 9-10 [11] Evans J. Growth rates over four rotations of pine in Swaziland. International Forestry Review, 2005, 7: 305-310 [12] Zhang XQ, Kirschbaum MUF, Hou ZH, et al. Carbon stock changes in successive rotations of Chinese fir (Cunninghamia lanceolata (Lamb) Hook) plantations. Forest Ecology and Management, 2004, 202: 131-147 [13] Huang ZQ, Wan XH, He ZM, et al. Soil microbial biomass, community composition and soil nitrogen cycling in relation to tree species in subtropical China. Soil Bio-logy & Biochemistry, 2013, 62: 68-75 [14] 杨蕾. 演替和气候梯度上功能性状和多样性对阔叶红松林凋落物产量和分解的影响机制. 硕士论文. 北京: 北京林业大学, 2018 [15] 孙浩哲, 王襄平, 张树斌, 等. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素. 植物生态学报, 2021, 45(6): 594-605 [16] Roumet C, Birouste M, Picon-Cochard C, et al. Root structure-function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy. New Phytologist, 2016, 210: 815-826 [17] 何睿橦, 钟全林, 李宝银, 等. 氮磷配施对刨花楠幼林细根性状的影响. 应用生态学报, 2022, 33(2): 337-343 [18] Wang T, Chen X, Zhao X, et al. Tree mycorrhizal type mediates the responses of foliar stoichiometry and tree growth to functionally dissimilar neighbours in a subtro-pical forest experiment. Functional Ecology, 2024, 38: 765-777 [19] Cornelissen JHC, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51: 335-380 [20] Orwin KH, Buckland SM, Johnson D, et al. Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology, 2010, 98: 1074-1083 [21] Campanella MV, Bertiller MB. Plant phenology, leaf traits and leaf litterfall of contrasting life forms in the arid Patagonian Monte, Argentina. Journal of Vegetation Science, 2008, 19: 75-85 [22] Poorter H, Remkes C. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia, 1990, 83: 553-559 [23] 陈柳娟, 钟全林, 李宝银, 等. 翅荚木人工林不同径阶间细根主要功能性状与根际土壤养分的关系. 应用生态学报, 2019, 30(11): 3627-3634 [24] Hobbie SE, Reich PB, Oleksyn J, et al. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology, 2006, 87: 2288-2297 [25] Cortez J, Garnier E, Perez-Harguindeguy N, et al. Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant and Soil, 2007, 296: 19-34 [26] Cornwell WK, Cornelissen JHC, Amatangelo K, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 2008, 11: 1065-1071 [27] Birouste M, Kazakou E, Blanchard A, et al. Plant traits and decomposition: Are the relationships for roots comparable to those for leaves? Annals of Botany, 2012, 109: 463-472 [28] Wan X, Joly FX, Jia H, et al. Functional identity drives tree species richness-induced increases in litterfall production and forest floor mass in young tree communities. New Phytologist, 2023, 240: 1003-1014 [29] 张佳慧, 王兴昌, 王传宽. 帽儿山温带森林演替初期土壤碳、氮、磷计量特征的变化. 应用生态学报, 2016, 27(10): 3189-3195 [30] Marty C, Houle D, Gagnon C. Variation in stocks and distribution of organic C in soils across 21 eastern Canadian temperate and boreal forests. Forest Ecology and Management, 2015, 345: 29-38 [31] 李洁冰, 闫文德, 马秀红. 亚热带樟树林凋落物量及其养分动态特征. 中南林业科技大学学报, 2011, 31(5): 223-228 [32] Pakeman RJ, Eastwood A, Scobie A. Leaf dry matter content as a predictor of grassland litter decomposition: A test of the ‘mass ratio hypothesis’. Plant and Soil, 2011, 342: 49-57 [33] Mommer L, Weemstra M. The role of roots in the resource economics spectrum. New Phytologist, 2012, 195: 725-727 [34] 张阳锋. 造林密度对米老排凋落物量及养分归还特征的影响. 硕士论文. 北京: 中国林业科学研究院, 2017 [35] 黄永珍, 王晟强, 叶绍明. 杉木林分类型对表层土壤团聚体有机碳及养分变化的影响. 应用生态学报, 2020, 31(9): 2857-2865 [36] 陈喻唯. 粤北亚热带三种森林类型植物-凋落物-土壤生态化学计量特征研究. 硕士论文. 长沙: 中南林业科技大学, 2023 [37] 谢京瑾, 许秋月, 何敏, 等. 中亚热带森林更新方式对土壤团聚体磷组分的影响. 应用生态学报, 2024, 35(2): 330-338 [38] 李素新, 张芸香, 郭晋平. 氮添加对华北落叶松叶片化学计量与养分重吸收效率的影响. 水土保持学报, 2021, 35(5): 249-254+263 |