[1] Tian JH, Lu X, Chen QQ, et al. Phosphorus fertilization affects soybean rhizosphere phosphorus dynamics and the bacterial community in karst soils. Plant and Soil, 2022, 475: 137-152 [2] 王凯, 雷虹, 石亮, 等. 沙地樟子松带状混交林土壤碳氮磷化学计量特征. 应用生态学报, 2019, 30(9): 2883-2891 [3] Kuzyakov Y, Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biology and Biochemistry, 2015, 83: 184-199 [4] 韩小美, 黄则月, 程飞, 等. 望天树人工林根际土壤理化性质及微生物群落特征. 应用生态学报, 2020, 31(10): 3365-3375 [5] Gao G, Huang X, Xu H, et al. Conversion of pure Chinese fir plantation to multi-layered mixed plantation enhances the soil aggregate stability by regulating microbial communities in subtropical China. Forest Ecosystems, 2022, 9: 100078 [6] 吴然, 康峰峰, 韩海荣, 等. 山西太岳山不同林龄华北落叶松林土壤微生物特性. 生态学杂志, 2016, 35(12): 3183-3190 [7] 王淑真, 梁晶晶, 包明琢, 等. 不同林龄杉木林土壤磷形态与解磷菌变化. 林业科学, 2022, 58(2): 58-69 [8] Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16: 263-276 [9] 张胜男, 高海燕, 王志波, 等. 华北落叶松-白桦混交林土壤细菌群落结构与多样性及其影响因素. 东北林业大学学报, 2023, 51(10): 98-105 [10] Chen JC, Deng ZF, Jiang Z, et al. Variations of rhizosphere and bulk soil microbial community in successive planting of Chinese fir (Cunninghamia lanceolata). Frontiers in Plant Science, 2022, 13: 954777 [11] 徐光荣, 张世熔, 钟钦梅, 等. 基于Tiessen方法的土壤磷分级浸提过程的改进研究. 土壤通报, 2017, 48(1): 134-140 [12] Bremner JM. Inorganic forms of nitrogen// Black CA, ed. Methods of Soil Analysis. Part 2. American Society of Agronomy. Madison, WI, USA: American Society of Agronomy, 1965: 1179-1237 [13] 查美琴, 徐海东, 成向荣, 等. 不同林龄杉木+闽楠复层林土壤磷形态及微生物功能多样性变化. 生态学报, 2020, 40(19): 6938-6947 [14] Stefani FOP, Bell TH, Marchand C, et al. Culture-dependent and-independent methods capture different microbial community fractions in hydrocarbon-contaminated soils. PLoS One, 2015, 10(6): e0128272 [15] Adams RI, Miletto M, Taylor JW, et al. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. The ISME Journal, 2013, 7: 1262-1273 [16] Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science, 2016, 353: 1272-1277 [17] Põlme S, Abarenkov K, Henrik Nilsson R, et al. Fungal traits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 2020, 105: 1-16 [18] Xu HD, Yu MK, Cheng XR. Abundant fungal and rare bacterial taxa jointly reveal soil nutrient cycling and multifunctionality in uneven-aged mixed plantations. Ecologi-cal Indicators, 2021, 129: 107932 [19] Fu DH, Wu XN, Duan CQ, et al. Response of soil phosphorus fractions and fluxes to different vegetation restoration types in a subtropical mountain ecosystem. Catena, 2020, 193: 104663 [20] Zhou J, Li XL, Peng F, et al. Mobilization of soil phosphate after 8 years of warming is linked to plant phosphorus-acquisition strategies in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology, 2021, 27: 6578-6591 [21] 张卓婷, 陶然, 罗如熠, 等. 次生演替过程中土壤磷组分及有效性研究进展. 应用与环境生物学报, 2023, DOI: 10.19675/j.cnki.1006-687x.2023.03031 [22] 杨世福, 马玲玲, 陈芸芝, 等. 鼎湖山季风常绿阔叶林演替系列土壤细菌群落的变化特征. 生态环境学报, 2022, 31(12): 2275-2282 [23] 周梦田, 刘莉, 付若仙, 等. 杉木木荷凋落物分解对杉木人工林土壤碳氮含量和酶活性影响. 南京林业大学学报: 自然科学版[EB/OL]. [2023-12-12]. http://kns.cnki.net/kcms/detail/32.1161.S.20231205.1534.002.html [24] 石丽红, 唐海明, 孙耿, 等. 长期不同施肥模式对双季稻田土壤酸解有机氮组分的影响. 应用生态学报, 2022, 33(12): 3345-3351 [25] 方晰, 陈婵. 植被恢复对土壤N、P积累转化及其耦合关系影响的研究进展. 中南林业科技大学学报, 2022, 42(2): 84-97 [26] 刘艳娇, 刘庆, 贺合亮, 等. 亚高山粗枝云杉人工林土壤原核微生物群落结构与功能变化. 应用生态学报, 2023, 34(12): 3279-3290 [27] Lewin GR, Carlos C, Chevrette MG, et al. Evolution and ecology of Actinobacteria and their bioenergy applications. Annual Review of Microbiology, 2016, 70: 235-254 [28] Leguina ACV, Barrios AC, Soro MMR, et al. Copper alters the physiology of tomato rhizospheric isolates of Papiliotrema laurentii. Scientia Horticulturae, 2019, 243: 376-384 [29] Gong MY, Hu YL, Wei W, et al. Production of conjugated fatty acids: A review of recent advances. Biotechnology Advances, 2019, 37: 107454 [30] 梁艳, 明安刚, 何友均, 等. 南亚热带马尾松-红椎混交林及其纯林土壤细菌群落结构与功能. 应用生态学报, 2021, 32(3): 878-886 [31] Chen L, Xiang W, Ouyang S, et al. Tight coupling of fungal community composition with soil quality in a Chinese fir plantation chronosequence. Land Degradation & Development, 2021, 32: 1164-1178 [32] Zhao P, Gao G, Ren Y, et al. Intra-annual variation of root-associated fungi of Pinus sylvestris var. mongolica: The role of climate and implications for host phenology. Applied Soil Ecology, 2022, 176: 104480 [33] 杨顺, 杨婷, 林斌, 等. 两株溶磷真菌的筛选、鉴定及溶磷效果的评价. 微生物学报, 2018, 58(2): 264-273 [34] Chen W, Gao Y, Yang J, et al. Taxonomical and functional bacterial community selection in the rhizosphere of the rice genotypes with different nitrogen use efficiencies. Plant and Soil, 2022, 8: 1-15 [35] Onley JR, Ahsan S, Sanford RA, et al. Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Applied and Environmental Microbiology, 2018, 84: e01985-17 [36] Sang Y, Jin L, Zhu R. Phosphorus-solubilizing capacity of Mortierella species isolated from rhizosphere soil of a poplar plantation. Microorganisms, 2022, 10: 2361 [37] Amarasinghe A, Knox OGG, Fyfe C, et al. Response of soil microbial functionality and soil properties to environmental plantings across a chronosequence in south eastern Australia. Applied Soil Ecology, 2021, 168: 100-104 |