[1] Fu BJ, Wang S, Liu Y, et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annual Review of Earth and Planetary Sciences, 2017, 45: 223-243 [2] Jia XX, Shao MA, Zhu YJ, et al. Soil moisture decline due to afforestation across the Loess Plateau, China. Journal of Hydrology, 2017, 546: 113-122 [3] Shi H, Shao MA. Soil and water loss from the Loess Plateau in China. Journal of Arid Environments, 2000, 45: 9-20 [4] 冯学赞, 张万军, 赵艳敏, 等. 生物集雨面营建技术及其集雨效率的研究. 水土保持通报, 2009, 29(1): 145-149 [5] 肖国举, 王静. 黄土高原集水农业研究进展. 生态学报, 2003, 23(5): 1003-1011 [6] 成六三, 李小雁, 高前兆. 干旱半干旱区集雨绿化系统研究现状及其发展趋势. 干旱区地理, 2005, 28(6): 781-788 [7] 段梓诚, 蒋文翠, 彭尔瑞, 等. 近自然集雨面的技术研究进展. 水利规划与设计, 2021(12): 40-43 [8] Rodriguez-Caballero E, Belnap J, Büdel B, et al. Dryland photoautotrophic soil surface communities endangered by global change. Nature Geoscience, 2018, 11: 185-189 [9] 周立峰, 杨荣, 赵文智. 荒漠人工固沙植被区土壤结皮斥水性发展特征. 中国沙漠, 2020, 40(3): 185-192 [10] 李胜龙, 肖波, 孙福海. 黄土高原干旱半干旱区生物结皮覆盖土壤水汽吸附与凝结特征. 农业工程学报, 2020, 36(15): 111-119 [11] 肖波, 赵允格, 邵明安. 陕北水蚀风蚀交错区两种生物结皮对土壤理化性质的影响. 生态学报, 2007, 27(11): 4662-4670 [12] Gao LQ, Bowker MA, Xu MX, et al. Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biology and Biochemistry, 2017, 105: 49-58 [13] 孙福海, 肖波, 李胜龙, 等. 黄土高原不同发育阶段生物结皮的导水和持水特征. 草业学报, 2021, 30(6): 54-63 [14] 周贵连, 张万军. 人工生物土壤结皮特性及其集雨潜力的研究. 中国生态农业学报, 2012, 20(10): 1329-1333 [15] Rocha B, Paco TA, Luz AC, et al. Are biocrusts and xerophytic vegetation a viable green roof typology in a mediterranean climate? A comparison between differently vegetated green roofs in water runoff and water quality. Water, 2021, 13: 94 [16] Xiao B, Sun FH, Hu KL, et al. Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem. Journal of Hydrology, 2019, 568: 792-802 [17] 余星兴, 肖波, 曹尤淞, 等. 黄土高原表层土壤孔隙性状与穿透阻力对藓结皮发育的响应. 水土保持学报, 2023, 37(3): 52-59 [18] 刘廷宏, 张志道, 王丽, 等. 雨水径流截集试验与集水量计算模式的分析研究. 山西水土保持科技, 1998(4): 16-19 [19] 冯学赞, 张万军. 干旱半干旱地区人工地衣集雨面营建潜力探析. 中国生态农业学报, 2005, 13(1): 156-159 [20] Xiao B, Sun FH, Yao XM, et al. Seasonal variations in infiltrability of moss-dominated biocrusts on aeolian sand and loess soil in the Chinese Loess Plateau. Hydrological Processes, 2019, 33: 2449-2463 [21] 谢申琦, 高丽倩, 赵允格, 等. 模拟降雨条件下生物结皮坡面产流产沙对雨强的响应. 应用生态学报, 2019, 30(2): 391-397 [22] 岳艳鹏, 成龙, 孙迎涛, 等. 毛乌素沙地生物结皮覆盖区土壤水分收支变化特征. 应用生态学报, 2022, 33(7): 1861-1870 [23] 曹尤淞, 张晨晖, 肖波, 等. 黑土区农田藻藓两类结皮发育对土壤团聚体稳定性和击溅侵蚀的影响. 应用生态学报, 2023, 34(4): 892-902 [24] 秦宁强, 赵允格. 生物土壤结皮对雨滴动能的响应及削减作用. 应用生态学报, 2011, 22(9): 2259-2264 [25] Gao LQ, Sun H, Xu MX, et al. Biocrusts resist runoff erosion through direct physical protection and indirect modification of soil properties. Journal of Soils and Sediments, 2020, 20: 133-142 [26] 闵雷雷, 于静洁. 土壤斥水性及其对坡面产流的影响研究进展. 地理科学进展, 2010, 29(7): 855-860 [27] 杨凯, 赵军, 赵允格, 等. 生物结皮坡面不同降雨历时的产流特征. 农业工程学报, 2019, 35(23): 135-141 [28] 吉静怡, 赵允格, 杨凯, 等. 黄土丘陵区生物结皮坡面产流产沙与其分布格局的关联. 生态学报, 2021, 41(4): 1381-1390 [29] 刘冉, 余新晓, 蔡强国, 等. 坡长对坡面侵蚀、搬运、沉积过程影响的研究进展. 中国水土保持科学, 2020, 18(6): 140-146 [30] 孔亚平, 张科利, 唐克丽. 坡长对侵蚀产沙过程影响的模拟研究. 水土保持学报, 2001, 24(2): 17-20 [31] Zhao YG, Zhao Y, Xu W, et al. Acquiring high-quality and sufficient propagules/fragments for cyanobacteria crust inoculation and restoration of degraded soils in a sandy desert. Land Degradation and Development, 2023, 34: 1593-1597 [32] Chock T, Antoninka AJ, Faist AM, et al. Responses of biological soil crusts to rehabilitation strategies. Journal of Arid Environments, 2019, 163: 77-85 [33] 徐海量, 苑塏烨, 徐俏. 干旱区生态修复的实践: 以古尔班通古特沙漠为例. 科学, 2020, 72(6): 14-18 [34] 冯浩, 吴普特, 彭红涛, 等. HEC和AAM添加剂对提高黄土集流效率的试验研究. 农业工程学报, 2001, 17(3): 28-31 |