[1] Tian HQ, Xu RT, Candell JG, et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586: 248-256 [2] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2021 [3] Yue Q, Wu H, Sun JF, et al. Deriving emission factors and estimation direct nitrous oxide emissions for crop cultivation in China. Environmental Science and Technology, 2019, 53: 10246-10257 [4] Liu C, Lu M, Cui J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Global Change Biology, 2014, 20: 1366-1381 [5] 简燕, 葛体达, 吴小红, 等. 稻田与旱地土壤自养微生物同化碳在土壤中的矿化与转化特征. 应用生态学报, 2014, 25(6): 1708-1714 [6] 朱同彬, 张金波, 蔡祖聪. 淹水条件下添加有机物料对蔬菜地土壤硝态氮及氮素气体排放的影响. 应用生态学报, 2012, 23(1): 109-114 [7] Wu L, Hu RG, Tang SR, et al. Nitrous oxide emissions in response to straw incorporation is regulated by historical fertilization. Environmental Pollution, 2020, 266: 115292 [8] 李骁, 姜蓉, 侯云鹏, 等. 基于DNDC模型研究春玉米长期秸秆还田的氮肥减施潜力. 植物营养与肥料学报, 2023, 29(11): 2004-2017 [9] Huang R, Gao M, Li JC, et al. Effect of straw residues in combination with reducing fertilization rate on greenhouse gas emission in vegetable feld. Environmental Science, 2018, 39: 4694-4704 [10] 马龙, 高伟, 栾好安, 等. 有机肥/秸秆替代化肥模式对设施菜田土壤氮循环功能基因丰度的影响. 植物营养与肥料学报, 2021, 27(10): 1767-1778 [11] 戴相林, 刘雅辉, 孙建平, 等. 秸秆还田和氮肥减施对滨海盐渍土稻田温室气体排放及氮肥利用率的影响. 应用与环境生物学报, 2023, 29(4): 994-1005 [12] 韩雪, 陈宝明. 增温对土壤N2O和CH4排放的影响与微生物机制研究进展. 应用生态学报, 2020, 31(11): 3906-3914 [13] Daly EJ, Hernandez-Ramirez G, Congreves KA, et al. Soil organic nitrogen priming to nitrous oxide: A synthesis. Soil Biology and Biochemistry, 2024, 189: 109254 [14] Stein LY. Insights into the physiology of ammonia-oxidizing microorganisms. Current Opinion in Chemical Biology, 2019, 49: 9-15 [15] Wrage-Mönnig N, Horn MA, Well R, et al. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biology and Biochemistry, 2018, 123: A3-A16 [16] 何莉莉, 黄佳佳, 王梦洁, 等. 生物炭配施硝化抑制剂降低稻田土壤NH3和N2O排放的微生物机制. 植物营养与肥料学报, 2023, 29(11): 2030-2041 [17] Huang R, Wang YY, Liu J, et al. Variation in N2O emission and N2O related microbial functional genes in straw- and biochar-amended and non-amended soils. Applied Soil Ecology, 2019, 137: 57-68 [18] 谢婉玉, 王永明, 纪红梅, 等. 秸秆还田种类对稻田N2O排放及硝化反硝化微生物的影响. 土壤, 2022, 54(4): 769-778 [19] 纪洋, 张晓艳, 马静, 等. 控释肥及其与尿素配合施用对水稻生长期N2O排放的影响. 应用生态学报, 2011, 22(8): 2031-2037 [20] Li J, Wang S, Luo JF, et al. Effects of biochar and 3,4-dimethylpyrazole phosphate (DMPP) on soil ammonia-oxidizing bacteria and nosZ-N2O reducers in the mitigation of N2O emissions from paddy soils. Journal of Soils and Sediments, 2021, 21: 1089-1098 [21] Liu JB, Hou HJ, Sheng R, et al. Denitrifying communities differentially respond to flooding drying cycles in paddy soils. Applied Soil Ecology, 2012, 62: 155-162 [22] Wei XM, Zhu ZK, Wei L, et al. Biogeochemical cycles of key elements inthe paddy-rice rhizosphere: Microbial mechanisms and coupling processes. Rhizosphere, 2019, 10: 100145 [23] Mooshammer M, Wanek W, Schnecker J. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology, 2012, 93: 770-782 [24] Zhang HK, Fang YY, Chen YC, et al. Enhanced soil potential N2O emissions by land-use change are linked to AOB-amoA and nirK gene abundance and denitrifying enzyme activity in subtropics. Science of the Total Environment, 2022, 850: 158032 [25] Ouyang Y, Norton JM, Stark JM, et al. Ammoniaoxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biology and Biochemistry, 2016, 96: 4-15 [26] 贾仲君, 翁佳华, 林先贵, 等. 氨氧化古菌的生态学研究进展. 微生物学报, 2010, 50(4): 431-437 [27] Chang BX, Yan ZF, Ju XT, et al. Quantifying biological processes producing nitrous oxide in soil using a mechanistic model. Biogeochemistry, 2022, 159: 1-14 [28] Chen Z, Luo XQ, Hu RG, et al. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microbial Ecology, 2010, 60: 850-861 [29] 曾希柏, 王亚男, 王玉忠, 等. 施肥对设施菜地nirK型反硝化细菌群落结构和丰度的影响. 应用生态学报, 2014, 25(2): 505-514 [30] 陈会巧, 马慧霞, 张桥, 等. 长期培肥降低稻田土壤硝化和反硝化细菌功能基因丰度并减缓氮素周转. 植物营养与肥料学报, 2023, 29(9): 1630-1642 [31] Carey CJ, Dove NC, Beman JM, et al. Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea. Soil Biology and Biochemistry, 2016, 99: 158-166 [32] Ouyang Y, Evans SE, Friesen ML, et al. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies. Soil Biology and Biochemistry, 2018, 127: 71-78 [33] Azziz G, Monza J, Etchebehere C, et al. nirS- and nirK-type denitrifier communities are differentially affected by soil type, rice cultivar and water management. European Journal of Soil Biology, 2017, 78: 20-28 [34] Chen ZM, Ma JC, Liu YX, et al. Differential responses of soil nirS- and nirK-type denitrifying microbial communities to long-term application of biogas slurry in a paddy soil. Applied Soil Ecology, 2023, 182: 104711 |