[1] Xing JW, Song JM, Yuan HM, et al. Atmospheric wet deposition of dissolved organic carbon to a typical anthropogenic-influenced semi-enclosed bay in the western Yellow Sea, China: Flux, sources and potential ecological environmental effects. Ecotoxicology and Environmental Safety, 2019, 182: 109371 [2] Liu XJ, Zhang Y, Han WX, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494: 459-462 [3] Mahowald N, Jickells TD, Baker AR, et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochemical Cycles, 2008, 22: GB4026 [4] 宋欢欢, 姜春明, 宇万太. 大气氮沉降的基本特征与监测方法. 应用生态学报, 2014, 25(2): 599-610 [5] 常运华, 刘学军, 李凯辉, 等. 大气氮沉降研究进展. 干旱区研究, 2012, 29(6): 972-979 [6] 陈立新, 乔璐, 段文标, 等. 温带森林磷沉降-水系统输出-迁移动态特征及对土壤磷影响. 土壤学报, 2012, 49(3): 454-464 [7] Willey JD, Kieber RJ, Eyman MS, et al. Rainwater dissolved organic carbon: Concentrations and global flux. Global Biogeochemical Cycles, 2000, 14: 139-148 [8] Cao J, Pan YP, Yu SS, et al. Rapid decline in atmospheric organic carbon deposition in rural Beijing, North China between 2016 and 2020. Atmospheric Environment, 2022, 276: 119030 [9] Pan YP, Wang YS, Xin JY, et al. Study on dissolved organic carbon in precipitation in Northern China. Atmospheric Environment, 2010, 44: 2350-2357 [10] 张晓琳, 翟鹏辉, 黄建辉. 降水和氮沉降对草地生态系统碳循环影响研究进展. 草地学报, 2018, 26(2): 284-288 [11] Elser JJ, Bracken MES, Cleland EE, et al. Global ana-lysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 2007, 10: 1135-1142 [12] Wang R, Goll D, Balkanski Y, et al. Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Global Change Biology, 2017, 23: 4854-4872 [13] 李德军, 莫江明, 方运霆, 等. 氮沉降对森林植物的影响. 生态学报, 2003, 23(9): 1891-1900 [14] 姜霞, 王秋娟, 王书航, 等. 太湖沉积物氮磷吸附/解吸特征分析. 环境科学, 2011, 32(5): 1285-1291 [15] Xu W, Luo XS, Li YP, et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmospheric Chemistry and Physics, 2015, 15: 12345-12360 [16] Yu GR, Jia YL, He NP, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 2019, 12: 424-429 [17] Wen Z, Wang RY, Li Q, et al. Spatiotemporal variations of nitrogen and phosphorus deposition across China. Science of the Total Environment, 2022, 830: 154740 [18] Zeng J, Yue FJ, Xiao M, et al. Dissolved organic carbon in rainwater from a karst agricultural area of Southwest China: Variations, sources, and wet deposition fluxes. Atmospheric Research, 2020, 245: 105140 [19] 刘平, 刘学军, 刘恩科, 等. 山西省太原市旱作农区大气活性氮干湿沉降年度变化特征. 中国生态农业学报, 2017, 25(5): 625-633 [20] 王宏, 姚莉, 张奇, 等. 四川盆地不同农作监测点氮磷湿沉降特征. 环境科学学报, 2024, 44(3): 399-408 [21] Luo J, Wang XR, Yang H, et al. Atmospheric phosphorus in the northern part of Lake Taihu, China. Che-mosphere, 2011, 84: 785-791 [22] 国家发展改革委. 全国重要生态系统保护和修复重大工程总体规划(2021—2035年)[EB/OL]. (2020-06-03)[2024-08-30]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202006/P020200611354032680531.pdf [23] 董淑龙, 马姜明, 辛文杰, 等. 漓江流域森林景观格局时空变化特征及驱动因素. 广西科学, 2023, 30(5): 972-992 [24] 何霄嘉, 王磊, 柯兵, 等. 中国喀斯特生态保护与修复研究进展. 生态学报, 2019, 39(18): 6577-6585 [25] Wang KL, Zhang CH, Chen HC, et al. Karst landscapes of China: Patterns, ecosystem processes and services. Landscape Ecology, 2019, 34: 2743-2763 [26] 刘家齐, 梁燕, 肖凡, 等. 西南喀斯特区域不同植被恢复阶段土壤磷主要来源及其季节变化. 应用生态学报, 2023, 34(12): 3313-3321 [27] Parker GG, Throughfall and stemflow in the forest nutrient cycle. Advances in Ecological Research, 1983, 13: 58-136 [28] 广西统计局. 广西统计年鉴. 北京: 中国统计出版社, 2022 [29] 刘洢杋, 杨峻晖, 刘家齐, 等. 喀斯特和非喀斯特森林植物磷含量及土壤无机磷分级特征比较. 南方农业学报, 2023, 54(1): 110-118 [30] 梁燕, 刘家齐, 肖凡, 等. 氮沉降形态对西南岩溶区森林土壤有效磷来源的影响. 生态环境学报, 2024, 33(2): 192-201 [31] 吴玉凤, 高霄鹏, 桂东伟, 等. 大气氮沉降监测方法研究进展. 应用生态学报, 2019, 30(10): 3605-3614 [32] Iavorivska L, Boyer EW, DeWalle DR. Atmospheric deposition of organic carbon via precipitation. Atmospheric Environment, 2016, 146: 153-163 [33] Li CL, Yan FP, Kang SC, et al. Concentration, sources, and flux of dissolved organic carbon of precipitation at Lhasa city, the Tibetan Plateau. Environmental Science and Pollution Research, 2016, 23: 12915-12921 [34] 马明真, 高扬, 郝卓. 亚热带典型流域C、N沉降季节变化特征及其耦合输出过程. 生态学报, 2019, 39(2): 599-610 [35] Zhang Y, Song L, Liu XJ, et al. Atmospheric organic nitrogen deposition in China. Atmospheric Environment, 2012, 46: 195-204 [36] 黄静文, 刘磊, 颜晓元, 等. 我国自然生态系统氮沉降临界负荷评估. 环境科学, 2023, 44(6): 3321-3328 [37] Li L, Li H, Peng L, et al. Characterization of precipitation in the background of atmospheric pollutants reduction in Guilin: Temporal variation and source apportionment. Journal of Environmental Sciences, 2020, 98: 1-13 [38] 张超博. 桂北柑橘园土壤养分与树体营养状况研究. 硕士论文. 重庆: 西南大学, 2019 [39] 郭雅思, 于奭, 黎泳珊, 等. 桂林市酸雨变化特征及来源分析. 环境科学, 2016, 37(8): 2897-2905 [40] Ma X, Jiao XN, Sha ZP, et al. Characterization of atmospheric bulk phosphorus deposition in China. Atmospheric Environment, 2022, 279: 119127 [41] 田帅, 单旭东, 程启鹏, 等. 巢湖流域典型稻麦轮作区大气氮磷沉降及对巢湖影响的分析. 江苏农业学报, 2022, 38(4): 958-966 [42] Vicars WC, Sickman JO, Ziemann PJ. Atmospheric phosphorus deposition at a montane site: Size distribution, effects of wildfire, and ecological implications. Atmospheric Environment, 2010, 44: 2813-2821 [43] 魏样, 同延安, 段敏, 等. 陕北典型农区大气干湿氮沉降季节变化. 应用生态学报, 2010, 21(1): 255-259 [44] 梁婷, 同延安, 刘学军, 等. 陕西关中地区大气氮湿沉降通量的动态变化. 农业环境科学学报, 2014, 33(12): 2389-2394 [45] 遆超普. 不同空间尺度区域氮素收支. 博士论文. 南京: 南京农业大学, 2011 |