[1] 林鹏. 九龙江口红树林研究—Ⅰ. 秋茄群落的生物量和生产力. 厦门大学学报: 自然科学版, 1985, 24(4): 508 [2] Nellemann C. Blue carbon: The role of healthy oceans in binding carbon[EB/OL]. (2009-05-16)[2024-04-10]. https://wedocs.unep.org/handle/20.500.11822/7772 [3] Alongi DM. Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 2014, 6: 195-219 [4] Alongi DM. Impacts of climate change on blue carbon stocks and fluxes in mangrove forests. Forests, 2022, 13: 149 [5] Donato DC, Kauffman JB, Murdiyarso D, et al. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 2011, 4: 293-297 [6] Wang F, Sanders C, Santos I, et al. Global blue carbon accumulation in tidal wetlands increases with climate change. National Science Review, 2021, 8: nwaa296 [7] Lu WZ, Xiao JF, Liu F, et al. Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: A meta-ana-lysis of eddy covariance data. Global Change Biology, 2017, 23: 1180-1198 [8] Cui XW, Liang J, Lu WZ, et al. Stronger ecosystem carbon sequestration potential of mangrove wetlands with respect to terrestrial forests in subtropical China. Agricultural and Forest Meteorology, 2018, 249: 71-80 [9] Macreadie PI, Costa MDP, Atwood TB, et al. Blue carbon as a natural climate solution. Nature Reviews Earth & Environment, 2021, 2: 826-839 [10] 昝启杰, 王勇军, 廖宝文, 等. 无瓣海桑、海桑人工林的生物量及生产力研究. 武汉植物学研究, 2001, 19(5): 391-396 [11] 温远光. 广西英罗港5种红树植物群落的生物量和生产力. 广西科学, 1999, 6(2): 142-147 [12] 钟晓青, 黄玉源, 张宏达, 等. 大亚湾红树林群落结构及初级生产力数量参数研究. 林业科学, 1999, 35(2): 26-30 [13] Han WD, Gao XM, Teunissen E. Study on Sonneratia apetala productivity in restored forests in Leizhou Peninsula, China. Journal of Forestry Research, 2001, 12: 229-234 [14] 彭友贵, 陈桂珠, 武鹏飞, 等. 人工生境条件下几种红树植物的净初级生产力比较研究. 应用生态学报, 2005, 16(8): 1383-1388 [15] 杨昊翔, 张丽, 闫敏, 等. 基于高时空分辨率融合影像的红树林总初级生产力遥感估算. 遥感技术与应用, 2021, 36(2): 453-462 [16] 田义超, 黄远林, 陶进, 等. 基于无人机影像的北部湾典型岛群红树林生态系统净初级生产力估算. 热带地理, 2019, 39(4): 583-596 [17] Lunstrum A, Chen LZ. Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry, 2014, 75: 223-232 [18] 孙江. 东寨港红树林有机碳来源、埋藏及福清宁德核电站邻近海域的环境效应. 硕士论文. 汕头: 汕头大学, 2023 [19] 褚冠宇. 基于风暴潮记录的广西红树林沉积与碳埋藏特征及脆弱性研究. 硕士论文. 南宁: 广西大学, 2021 [20] 胡懿凯, 朱宁华, 廖宝文, 等. 淇澳岛不同恢复类型红树林碳密度及固碳速率研究. 中南林业科技大学学报, 2019, 39(12): 101-107 [21] Jiang ZM, Sanders CJ, Xin K, et al. Increasing carbon and nutrient burial rates in mangroves coincided with coastal aquaculture development and water eutrophication in NE Hainan, China. Marine Pollution Bulletin, 2024, 199: 115934 [22] Zhang Y, Meng XW, Xia P, et al. Spatiotemporal variations in the organic carbon accumulation rate in mangrove sediments from the Yingluo Bay, China, since 1900. Acta Oceanologica Sinica, 2021, 40: 65-77 [23] 朱耀军, 郭菊兰, 武高洁. 红树林湿地有机碳研究进展. 生态学杂志, 2012, 31(10): 2681-2687 [24] 张莉, 郭志华, 李志勇. 红树林湿地碳储量及碳汇研究进展. 应用生态学报, 2013, 24(4): 1153-1159 [25] 朱远辉, 柳林, 刘凯, 等. 红树林植物生物量研究进展. 湿地科学, 2014, 12(4): 515-526 [26] 仝川, 罗敏, 陈鹭真, 等. 滨海蓝碳湿地碳汇速率测定方法及中国的研究现状和挑战. 生态学报, 2023, 43(17): 6937-6950 [27] 廖宝文, 张乔民. 中国红树林的分布、面积和树种组成. 湿地科学, 2014, 12(4): 435-440 [28] Elias F, Ferreira J, Resende AF, et al. Comparing contemporary and lifetime rates of carbon accumulation from secondary forests in the eastern Amazon. Forest Ecology and Management, 2022, 508: 120053 [29] 曹庆先. 北部湾沿海红树林生物量和碳贮量的遥感估算. 博士论文. 北京: 中国林业科学研究院, 2010 [30] Zhou GY, Liu SG, Li ZA, et al. Old-growth forests can accumulate carbon in soils. Science, 2006, 314: 1417 [31] Yu CX, Guan DS, Gang W, et al. Development of ecosystem carbon stock with the progression of a natural mangrove forest in Yingluo Bay, China. Plant and Soil, 2021, 460: 391-401 [32] Zhang YS, Yu CX, Xie JJ, et al. Comparison of fine root biomass and soil organic carbon stock between exo-tic and native mangrove. Catena, 2021, 204: 105423 [33] 何琴飞, 郑威, 黄小荣, 等. 广西钦州湾红树林碳储量与分配特征. 中南林业科技大学学报, 2017, 37(11): 121-126 [34] 范航清, 尹毅, 劳丽荣. 广西海岸白骨壤红树植物地上部生物量的相关分析. 广西科学院学报, 1993, 9(2): 25-30 [35] 陈卉. 中国两种亚热带红树林生态系统的碳固定、掉落物分解及其同化过程. 博士论文. 厦门: 厦门大学, 2013 [36] 曹策. 广东湛江高桥红树林生态系统碳固定特征. 硕士论文. 北京: 中国科学院大学, 2018 [37] Wu B, Zhang WZ, Tian YC, et al. Characteristics and carbon storage of a typical mangrove island ecosystem in Beibu Gulf, South China Sea. Journal of Resources and Ecology, 2022, 13: 458-465 [38] 林鹏, 胡宏友, 郑文教, 等. 深圳福田白骨壤红树林生物量和能量研究. 林业科学, 1998, 34(1): 18-24 [39] 彭聪姣, 钱家炜, 郭旭东, 等. 深圳福田红树林植被碳储量和净初级生产力. 应用生态学报, 2016, 27(7): 2059-2065 [40] Chen LZ, Zeng XQ, Tam N, et al. Comparing carbon sequestration and stand structure of monoculture and mixed mangrove plantations of Sonneratia caseolaris and S. apetala in Southern China. Forest Ecology and Management, 2012, 284: 222-229 [41] 缪绅裕, 陈桂珠, 陈正桃, 等. 广东湛江保护区红树林种群的生物量及其分布格局. 广西植物, 1998, 18(1): 19-23 [42] 朱可峰, 廖宝文, 章家恩. 广州市南沙红树植物无瓣海桑、木榄人工林生物量的研究. 林业科学研究, 2011, 24(4): 531-536 [43] 朱耀军, 赵峰, 郭菊兰, 等. 湛江高桥红树林湿地有机碳分布及埋藏特征. 生态学报, 2016, 36(23): 7841-7849 [44] 卢伟志, 林广旋, 王参谋, 等. 广东湛江次生与原生红树林群落碳储量与掉落物动态研究. 海洋环境科学, 2014, 33(6): 913-919 [45] 林金顺. 福建省平潭沿海秋茄人工林群落的生物量研究. 防护林科技, 2005(2): 6-8 [46] Chen J, Gao M, Chen G, et al. Biomass accumulation and organic carbon stocks of Kandelia obovata mangrove vegetation under different simulated sea levels. Acta Oceanologica Sinica, 2022, 41: 78-86 [47] Xiong YM, Cakir R, Phan SM, et al. Global patterns of tree stem growth and stand aboveground wood production in mangrove forests. Forest Ecology and Management, 2019, 444: 382-392 [48] Chen SY, Chen B, Chen GS, et al. Higher soil organic carbon sequestration potential at a rehabilitated mangrove comprised of Aegiceras corniculatum compared to Kandelia obovata. Science of the Total Environment, 2021, 752: 142279 [49] 廖宝文, 郑德璋, 李云, 等. 不同类型海桑-秋茄人工林地上生物量及营养元素积累与分布. 应用生态学报, 1999, 10(1): 11-15 [50] He ZY, Sun HY, Peng YS, et al. Colonization by native species enhances the carbon storage capacity of exotic mangrove monocultures. Carbon Balance and Management, 2020, 15: 28 [51] 高天伦, 管伟, 毛静, 等. 广东省雷州附城主要红树林群落碳储量及其影响因子. 生态环境学报, 2017, 26(6): 985-990 [52] 毛子龙, 杨小毛, 赵振业, 等. 深圳福田秋茄红树林生态系统碳循环的初步研究. 生态环境学报, 2012, 21(7): 1189-1199 [53] 林光辉, 林鹏. 海莲、秋茄两种红树群落能量的研究. 植物生态学与地植物学学报, 1988, 12(1): 31-39 [54] Yu CX, Feng JX, Liu K, et al. Changes of ecosystem carbon stock following the plantation of exotic mangrove Sonneratia apetala in Qi’ao Island, China. Science of the Total Environment, 2020, 717: 137142 [55] Wang G, Yu C, Singh M, et al. Community structure and ecosystem carbon stock dynamics along a chronosequence of mangrove plantations in China. Plant and Soil, 2021, 464: 605-620 [56] Zhang ZM, Wang Y, Zhu YK, et al. Carbon sequestration in soil and biomass under native and non-native mangrove ecosystems. Plant and Soil, 2022, 479: 61-76 [57] Luo ZK, Sun OJ, Xu HL. A comparison of species composition and stand structure between planted and natural mangrove forests in Shenzhen Bay, South China. Journal of Plant Ecology, 2010, 3: 165-174 [58] 金亮, 卢昌义, 叶勇, 等. 九龙江口秋茄红树林储碳固碳功能研究. 福建林业科技, 2013, 40(4): 7-11 [59] 郑文教, 林鹏, 薛雄志, 等. 广西红海榄红树林C、H、N的动态研究. 应用生态学报, 1995, 6(1): 17-22 [60] 林鹏, 尹毅, 卢昌义. 广西红海榄群落的生物量和生产力. 厦门大学学报: 自然科学版, 1992, 31(2): 199-202 [61] 林鹏. 海莲红树林的生物量和生产力. 厦门大学学报: 自然科学版, 1990, 29(2): 209-213 [62] 彭逸生, 庄雪茵, 赵丽丽, 等. 树种选择和滩地高程对红树林修复早期系统碳储量的影响. 中山大学学报: 自然科学版, 2023, 62(2): 37-46 [63] 宁世江, 蒋运生, 邓泽龙, 等. 广西龙门岛群桐花树天然林生物量的初步研究. 植物生态学报, 1996, 20(1): 57-64 [64] 黄月琼, 吴小凤, 韩维栋, 等. 无瓣海桑人工林林分生物量的研究. 江西农业大学学报, 2002, 24(4): 533-536 [65] Ren H, Chen H, Li ZA, et al. Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China. Plant and Soil, 2010, 327: 279-291 [66] 胡懿凯, 徐耀文, 薛春泉, 等. 广东省无瓣海桑和林地土壤碳储量研究. 华南农业大学学报, 2019, 40(6): 95-103 [67] 孙学超, 黄展鹏, 张琼锐, 等. 珠海淇澳岛人工次生无瓣海桑纯林的植被碳储量变化. 华南师范大学学报: 自然科学版, 2022, 54(4): 89-100 [68] 王冰鑫. 三亚河红树林生态系统群落结构调查及碳储量研究. 硕士论文. 三亚: 海南热带海洋学院, 2023 [69] 张银龙, 林鹏. 九龙江河口秋茄林及白骨壤红树林土壤特性研究. 河南农业大学学报, 1998, 32(4): 325-330 [70] 徐慧鹏. 广西典型红树林沉积与碳埋藏特征及其扩张历史研究. 硕士论文. 南宁: 广西大学, 2020 [71] 符翔超, 陈玉军, 黄勃, 等. 淇澳岛光滩、互花米草群落区和人工红树林区的土壤性质及其差异. 湿地科学, 2022, 20(5): 715-720 [72] Thura K, Serrano O, Gu JL, et al. Mangrove restoration built soil organic carbon stocks over six decades: A chronosequence study. Journal of Soils and Sediments, 2023, 23: 1193-1203 [73] Wu MX, He ZY, Fung ST, et al. Species choice in mangrove reforestation may influence the quantity and quality of long-term carbon sequestration and storage. Science of the Total Environment, 2020, 714: 136742 [74] Gu JL, Wu JP. Blue carbon effects of mangrove restoration in subtropics where Spartina alterniflora invaded. Ecological Engineering, 2023, 186: 106822 [75] 毛子龙, 赖梅东, 赵振业, 等. 薇甘菊入侵对深圳湾红树林生态系统碳储量的影响. 生态环境学报, 2011, 20(12): 1813-1818 [76] Feng JX, Wang SG, Wang SJ, et al. Effects of invasive Spartina alterniflora Loisel. and subsequent ecological replacement by Sonneratia apetala Buch.-Ham. on soil organic carbon fractions and stock. Forests, 2019, 10: 171 [77] Liu T, Liu SF, Wu B, et al. Increase of organic carbon burial response to mangrove expansion in the Nanliu River estuary, South China Sea. Progress in Earth and Planetary Science, 2020, 7: 71 [78] Fu CC, Li Y, Zeng L, et al. Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. Global Change Biology, 2021, 27: 202-214 [79] Feng JX, Cui XW, Zhou J, et al. Effects of exotic and native mangrove forests plantation on soil organic carbon, nitrogen, and phosphorus contents and pools in Leizhou, China. Catena, 2019, 180: 1-7 [80] 尹毅, 范航清, 苏相洁. 广西白骨壤群落的生物量研究. 广西科学院学报, 1993, 9(2): 19-24 [81] Li X, Aguila LCR, Wu DH, et al. Carbon sequestration and storage capacity of Chinese fir at different stand ages. Science of the Total Environment, 2023, 904: 166962 [82] Shang R, Chen JM, Xu MZ, et al. China’s current forest age structure will lead to weakened carbon sinks in the near future. Innovation, 2023, 4: 100515 [83] Yao YT, Piao SL, Wang T. Future biomass carbon sequestration capacity of Chinese forests. Science Bulletin, 2018, 63: 1108-1117 [84] Tong XW, Brandt M, Yue YM, et al. Forest management in southern China generates short term extensive carbon sequestration. Nature Communications, 2020, 11: 129 [85] 牛红苹, 冯建祥, 殷祚云, 等. 广州南沙滨海湿地人工红树林植物生长量及多样性研究. 林业与环境科学, 2023, 39(2): 6-16 [86] 陈世勇. 红树林秋茄、桐花树、白骨壤混交生长效果研究. 安徽农学通报, 2014, 20(16): 85-87, 118 [87] Liu X, Xiong YM, Liao BW. Relative contributions of leaf litter and fine roots to soil organic matter accumulation in mangrove forests. Plant and Soil, 2017, 421: 493-503 [88] Ouyang XG, Lee SY, Connolly RM. The role of root decomposition in global mangrove and saltmarsh carbon budgets. Earth-Science Reviews, 2017, 166: 53-63 [89] Zhang YS, Xiao L, Guan DS, et al. The role of mangrove fine root production and decomposition on soil organic carbon component ratios. Ecological Indicators, 2021, 125: 107525 [90] 覃国铭, 张靖凡, 周金戈, 等. 广东省红树林土壤碳储量及固碳潜力研究. 热带地理, 2023, 43(1): 23-30 [91] 徐慧鹏, 刘涛, 张建兵. 红树林碳埋藏过程对海平面上升, 气候变化和人类活动的响应. 广西科学, 2020, 27(1): 84-90 [92] 宿海良, 袁雷武, 王猛, 等. 1949—2019年登陆中国的热带气旋特征及致灾分析. 应用海洋学学报, 2021, 40(3): 382-387 [93] 方发之, 桂慧颖, 黎肇家, 等. 6种红树幼苗对不同盐度的生理适应性. 植物研究, 2023, 43(6): 881-889 [94] 吴悦宏, 朱晓武, 肖泽鑫, 等. 粤东地区3种红树植物生长对滩面高程的响应. 江苏林业科技, 2022, 49(4): 19-23 [95] 陈玉军, 廖宝文, 李玫, 等. 高盐度海滩红树林造林试验. 华南农业大学学报, 2014, 35(2): 78-85 |