应用生态学报 ›› 2025, Vol. 36 ›› Issue (8): 2541-2551.doi: 10.13287/j.1001-9332.202508.022
邓琪鹏1, 刘耕源1*, 杨青2, 常玮岑1, 陈钰1
收稿日期:
2024-12-30
接受日期:
2025-06-09
出版日期:
2025-08-18
发布日期:
2026-02-18
通讯作者:
*E-mail: liugengyuan@bnu.edu.cn
作者简介:
邓琪鹏, 男, 2002年生, 硕士研究生。主要从事城市生态规划与管理研究。E-mail: 202421180045@mail.bnu.edu.cn
基金资助:
DENG Qipeng1, LIU Gengyuan1*, YANG Qing2, CHANG Weicen1, CHEN Yu1
Received:
2024-12-30
Accepted:
2025-06-09
Online:
2025-08-18
Published:
2026-02-18
摘要: 城市绿色空间作为缓解“城市病”的重要自然解决方案,因其在提供生态系统服务方面的显著作用而备受关注。然而,现有研究对城市绿色空间生态系统服务的评估多局限于二维空间特征,对三维结构特征及其生态系统服务效应的评估存在不足,难以全面、准确地揭示绿色空间对居民福祉提升的实际贡献。本文系统梳理了城市绿色空间生态系统服务的现有评估方法,深入分析二维空间评估方法的局限性,并重点探讨了新兴技术(如激光雷达、街景图像和人工智能算法等)在三维空间评估中的应用进展。基于此,本文提出了融合新兴技术与城市绿色空间生态系统服务三维评估的创新研究框架,并针对当前技术在数据处理效率以及多尺度应用方面的挑战,探讨了未来研究的发展方向,以期为城市绿色空间的精细化管理和可持续发展提供理论支持和实践参考。
邓琪鹏, 刘耕源, 杨青, 常玮岑, 陈钰. 从二维到三维: 城市绿色空间生态系统服务评估技术进展[J]. 应用生态学报, 2025, 36(8): 2541-2551.
DENG Qipeng, LIU Gengyuan, YANG Qing, CHANG Weicen, CHEN Yu. From two to three dimensions: Advanced techniques for evaluating ecosystem services in urban green spaces[J]. Chinese Journal of Applied Ecology, 2025, 36(8): 2541-2551.
[1] Liogkas V. Circular cities: Challenges and opportunities towards their transition to a green, smart and circular economy. Proceedings of the 5th International Conference on Future of Business, Management and Econo-mics, Rome, Italy, 2023: 25-32 [2] Osborne M, Kearns P, Yang J. Learning cities: Developing inclusive, prosperous and sustainable urban communities. International Review of Education, 2013, 59: 409-423 [3] Taylor L, Hochuli DF. Defining greenspace: Multiple uses across multiple disciplines. Landscape and Urban Planning, 2017, 158: 25-38 [4] Wu LJ, Hu Z, Huang FW. An improvement on the assessment of ecosystem services value of urban wetlands under consideration of water yield at regional scale. PLoS One, 2024, 19(9): e0306628 [5] Zhang ZY, Dobson B, Moustakis Y, et al. Assessing the co-benefits of urban greening coupled with rainwater harvesting management under current and future climates across USA cities. Environmental Research Letters, 2023, 18: 034036 [6] Prihandi DR, Nurvianto S. The role of urban green space design to support bird community in the urban ecosystem. Biodiversitas Journal of Biological Diversity, 2022, 23: 2137-2145 [7] Tuholske C, Caylor K, Funk C, et al. Global urban population exposure to extreme heat. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118: e2024792118 [8] Bahrami Z, Sato S, Yang ZS, et al. The perception of air pollution and its health risk: A scoping review of measures and methods. Global Health Action, 2024, 17: 2370100 [9] Capari L, Wilfing H, Exner A, et al. Cooling the city? A scientometric study on urban green and blue infrastructure and climate change-induced public health effects. Sustainability, 2022, 14: 4929 [10] Modi T, Ghosh T, Ali D, et al. Geospatial evaluation of normalized difference vegetation index (NDVI) and urban heat island: A spatio-temporal study of Gandhinagar City, Gujarat, India. Geomatics, Natural Hazards and Risk, 2024, 15: 2356214 [11] Parmehr EG, Amati M, Taylor EJ, et al. Estimation of urban tree canopy cover using random point sampling and remote sensing methods. Urban Forestry & Urban Greening, 2016, 20: 160-171 [12] Tian P, Li JL, Cao LD, et al. Assessing spatiotemporal characteristics of urban heat islands from the perspective of an urban expansion and green infrastructure. Sustai-nable Cities and Society, 2021, 74: 103208 [13] Xu HS, Sheng K, Gao J. Mitigation of heat island effect by green stormwater infrastructure: A comparative study between two diverse green spaces in Nanjing. Frontiers in Ecology and Evolution, 2023, 11: 1307756 [14] Li Q, Li Q, Lu XH, et al. Numerical simulation of the effect of street trees on outdoor mean radiant temperature through decomposing pedestrian experienced thermal radiation: A case study in Guangzhou, China. Urban Forestry & Urban Greening, 2024, 91: 128189 [15] Haase D, Larondelle N, Andersson E, et al. A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation. Ambio, 2014, 43: 413-433 [16] Byrne LB, Bruns MA, Kim KC. Ecosystem properties of urban land covers at the aboveground-belowground interface. Ecosystems, 2008, 11: 1065-1077 [17] Riechers M, Barkmann J, Tscharntke T. Diverging perceptions by social groups on cultural ecosystem services provided by urban green. Landscape and Urban Planning, 2018, 175: 161-168 [18] Richards DR, Belcher RN, Carrasco LR, et al. Global variation in contributions to human well-being from urban vegetation ecosystem services. One Earth, 2022, 5: 522-533 [19] Charoenkit S, Piyathamrongchai K. A review of urban green spaces multifunctionality assessment: A way forward for a standardized assessment and comparability. Ecological Indicators, 2019, 107: 105592 [20] Han R, Feng CC, Xu NY, et al. Spatial heterogeneous relationship between ecosystem services and human disturbances: A case study in Chuandong, China. Science of the Total Environment, 2020, 721: 137818 [21] 周廷刚, 罗红霞, 郭达志. 基于遥感影像的城市空间三维绿量(绿化三维量)定量研究. 生态学报, 2005, 25(3): 415-420 [22] Daniels B, Zaunbrecher BS, Paas B, et al. Assessment of urban green space structures and their quality from a multidimensional perspective. Science of the Total Environment, 2018, 615: 1364-1378 [23] Fan SX, Zhang MY, Li YL, et al. Impacts of composition and canopy characteristics of plant communities on microclimate and airborne particles in Beijing, China. Sustainability, 2021, 13: 4791 [24] Song P, Kim G, Mayer A, et al. Assessing the ecosystem services of various types of urban green spaces based on i-Tree Eco. Sustainability, 2020, 12: 1630 [25] Degerickx J, Hermy M, Somers B. Mapping functional urban green types using high resolution remote sensing data. Sustainability, 2020, 12: 2144 [26] Yastikli N, Cetin Z. Automatic 3D building model gene-rations with airborne LiDAR data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, 4: 411-414 [27] Wang XM, Meng QY, Zhang LL, et al. Evaluation of urban green space in terms of thermal environmental benefits using geographical detector analysis. International Journal of Applied Earth Observation and Geoinformation, 2021, 105: 102610 [28] Turlapaty A, Gokaraju B, Du Q, et al. A hybrid approach for building extraction from spaceborne multi-angular optical imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5: 89-100 [29] Ryoo D, Kang K, Park C. Simulation of 3D virtual space model based on texture image & structure analysis. 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea (South), 2019: 1321-1323 [30] Huerta RE, Yépez FD, Lozano-García DF, et al. Mapping urban green spaces at the metropolitan level using very high resolution satellite imagery and deep learning techniques for semantic segmentation. Remote Sensing, 2021, 13: 2031 [31] Liang HL, Chen D, Zhang QP. Assessing urban green space distribution in a compact megacity by landscape metrics. Journal of Environmental Engineering and Landscape Management, 2017, 25: 64-74 [32] Ma XT, Man QX, Yang XM, et al. Urban feature extraction within a complex urban area with an improved 3D-CNN using airborne hyperspectral data. Remote Sensing, 2023, 15: 992 [33] Liu Q, Li W, Yu SY, et al. An algorithm on monocular 3D object detection based on depth estimation. 2023 5th International Conference on Intelligent Control, Mea-surement and Signal Processing (ICMSP), Chengdu, China, 2023: 1171-1178 [34] Alexander C. Influence of the proportion, height and proximity of vegetation and buildings on urban land surface temperature. International Journal of Applied Earth Observation and Geoinformation, 2021, 95: 102265 [35] He D, Shi Q, Liu XP, et al. Generating 2 m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network. International Journal of Applied Earth Observation and Geoinformation, 2022, 106: 102667 [36] Rosen PA, Hensley S, Joughin IR, et al. Synthetic aperture radar interferometry. Proceedings of the IEEE, 2000, 88: 333-382 [37] Nex F, Armenakis C, Cramer M, et al. UAV in the advent of the twenties: Where we stand and what is next. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184: 215-242 [38] Alexander C, Korstjens AH, Hill RA. Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models. International Journal of Applied Earth Observation and Geoinformation, 2018, 65: 105-113 [39] Luo HF, Khoshelham K, Chen CC, et al. Individual tree extraction from urban mobile laser scanning point clouds using deep pointwise direction embedding. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 326-339 [40] Cabrera-Ariza AM, Lara-Gómez MA, Santelices-Moya RE, et al. Individualization of Pinus radiata canopy from 3d UAV dense point clouds using color vegetation indices. Sensors, 2022, 22: 1331 [41] Engel M, Heinzel A, Schreiber E, et al. Recent results of a UAV-based synthetic aperture radar for remote sen-sing applications. EUSAR 2021, 13th European Conference on Synthetic Aperture Radar, 2021: 1-5 [42] Wang L, Han X, He J, et al. Measuring residents’ perceptions of city streets to inform better street planning through deep learning and space syntax. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 215-230 [43] Wang W, Wu CY, Fang QH, et al. Cultural ecosystem services evaluation in a coastal city of China using social media data. Ocean & Coastal Management, 2023, 242: 106693 [44] Fayad I, Ciais P, Schwartz M, et al. Hy-TeC: A hybrid vision transformer model for high-resolution and large-scale mapping of canopy height. Remote Sensing of Environment, 2024, 302: 113945 [45] Hu MH, Mao JD, Li J, et al. A novel lidar signal denoising method based on convolutional autoencoding deep learning neural network. Atmosphere, 2021, 12: 1403 [46] Zaboli M, Rastiveis H, Hosseiny B, et al. D-Net: A density-based convolutional neural network for mobile LiDAR point clouds classification in urban areas. Remote Sensing, 2023, 15: 2317 [47] Dalla Corte AP, Souza DV, Rex FE, et al. Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual tree attributes. Computers and Electronics in Agriculture, 2020, 179: 105815 [48] Bittner K, Zorzi S, Krauß T, et al. DSM2DTM: An end-to-end deep learning approach for digital terrain model generation. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, 10: 925-933 [49] Duan L, Desbrun M, Giraud A, et al. Large-scale DTM generation from satellite data. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 1442-1450 [50] Qin RJ, Tian JJ, Reinartz P. 3D change detection-approaches and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122: 41-56 [51] Yao J, Zhang B, Li CY, et al. Extended vision transformer (ExViT) for land use and land cover classification: A multimodal deep learning framework. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-15 [52] Tarasiewicz T, Nalepa J, Farrugia RA, et al. Multitemporal and multispectral data fusion for super-resolution of Sentinel-2 images. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-19 [53] Paris C, Kotowska MM, Erasmi S, et al. A novel approach for environmental monitoring based on the integration of multi-temporal multi-source Earth Observation data and field surveys in a spatio-temporal framework. IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 5897-5900 [54] Ma XY, Ma CY, Wu C, et al. Measuring human perceptions of streetscapes to better inform urban renewal: A perspective of scene semantic parsing. Cities, 2021, 110: 103086 [55] Fu YH, Song Y. Evaluating street view cognition of visible green space in Fangcheng district of Shenyang with the green view index. 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 2020: 144-148 [56] Sun Y, Wang XZ, Zhu JY, et al. Using machine lear-ning to examine street green space types at a high spatial resolution: Application in Los Angeles County on socioeconomic disparities in exposure. Science of the Total Environment, 2021, 787: 147653 [57] Sun LS, Wang JN, Xie ZW, et al. Evaluating the street greening with the multiview data fusion. Journal of Sensors, 2021, 1: 2793474 [58] Landuyt D, Broekx S, D’Hondt R, et al. A review of Bayesian belief networks in ecosystem service modelling. Environmental Modelling & Software, 2013, 46: 1-11 [59] Li ZQ. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Computers, Environment and Urban Systems, 2022, 96: 101845 [60] Bai JL, Ren CY, Shi XY, et al. Tree species diversity impacts on ecosystem services of temperate forests. Ecological Indicators, 2024, 167: 112639 [61] Reid CE, Clougherty JE, Shmool JL, et al. Is all urban green space the same? A comparison of the health benefits of trees and grass in New York City. International Journal of Environmental Research and Public Health, 2017, 14: 1411 [62] Ghermandi A, Langemeyer J, Van Berkel D, et al. Social media data for environmental sustainability: A critical review of opportunities, threats, and ethical use. One Earth, 2023, 6: 236-250 [63] Kondo MC, Triguero-Mas M, Donaire-Gonzalez D, et al. Momentary mood response to natural outdoor environments in four European cities. Environment Internatio-nal, 2020, 134: 105237 [64] Dai DX, Chen YX, Dai KY. Evaluating cultural ecosystem services in China’s modern historic parks: A sentiment computing approach. Urban Forestry & Urban Greening, 2024, 95: 128314 [65] Wu LL, Fan FL. A parameter optimized method for invest model in sub-pixel scale integrating machine learning algorithm and vegetation-impervious surface-soil model. Land, 2024, 13: 1876 [66] Zhang N, Chen Y, Luo L, et al. Effectiveness of different urban heat island mitigation methods and their regional impacts. Journal of Hydrometeorology, 2017, 18: 2991-3012 [67] Martilli A, Nazarian N, Krayenhoff ES, et al. WRF-Comfort: Simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model. Geoscientific Model Development, 2024, 17: 5023-5039 [68] Liu JY, Zheng BH. A simulation study on the influence of street tree configuration on fine particulate matter (PM2.5) concentration in street canyons. Forests, 2023, 14: 1550 [69] Krayenhoff ES, Jiang T, Christen A, et al. A multi-layer urban canopy meteorological model with trees (BEP-Tree): Street tree impacts on pedestrian-level climate. Urban Climate, 2020, 32: 100590 [70] Lachapelle JA, Krayenhoff ES, Middel A, et al. A microscale three-dimensional model of urban outdoor thermal exposure (TUF-Pedestrian). International Journal of Biometeorology, 2022, 66: 833-848 [71] Qi QL, Tao F, Hu TL, et al. Enabling technologies and tools for digital twin. Journal of Manufacturing Systems, 2021, 58: 3-21 [72] Buckley SJ, Howell JA, Naumann N, et al. V3Geo: A cloud-based repository for virtual 3D models in geoscience. Geoscience Communication, 2021, 5: 67-82 [73] Suwardhi D, Fauzan KN, Harto AB, et al. 3D modeling of individual trees from Lidar and photogrammetric point clouds by explicit parametric representations for green open space (GOS) management. ISPRS International Journal of Geo-Information, 2022, 11: 174 [74] Aoki Y. Relationship between perceived greenery and width of visual fields. Journal of the Japanese Institute of Landscape Architects, 1987, 51: 1-10 [75] Yu SY, Yu BL, Song W, et al. View-based greenery: A three-dimensional assessment of city buildings’ green visibility using Floor Green View Index. Landscape and Urban Planning, 2016, 152: 13-26 [76] Wang RH, Zhao JW. Examining the coexistence of people’s satisfaction and ecological quality in urban green space. Journal of Urban Planning and Development, 2021, 147: 05021002 [77] Abdollahpour SS, Qi M, Le HT, et al. Urban spatial structure and air quality in the United States: Evidence from a longitudinal approach. Environment International, 2024, 190: 108871 [78] Lee JK, Lee S, Kim YC, et al. Augmented virtual rea-lity and 360 spatial visualization for supporting user-engaged design. Journal of Computational Design and Engineering, 2023, 10: 1047-1059 [79] Zhang YX, Liu HX, Kang SC, et al. Virtual reality applications for the built environment: Research trends and opportunities. Automation in Construction, 2020, 118: 103311 [80] Huang QY, Yang MY, Jane HA, et al. Trees, grass, or concrete? The effects of different types of environments on stress reduction. Landscape and Urban Planning, 2020, 193: 103654 [81] Sacramento P, Deligant A, Loekken S, et al. EO space and multi-source data visualization using Virtual Reality in the ESA Φ-Lab. 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), Rome, Italy, 2022: 737-741 [82] Wehbe RR, Machuca BMD, Escobedo L. Research methodologies across the physical-virtual reality spectrum. Adjunct Proceedings of the 2023 ACM Internatio-nal Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing, Cancun, Quintana Roo, Mexico, 2023: 765-768 [83] Magnuson R, Erfanifard Y, Kulicki M, et al. Mobile devices in forest mensuration: A review of technologies and methods in single tree measurements. Remote Sen-sing, 2024, 16: 3570 [84] Anders I, Peters-Von Gehlen K, Bergemann M, et al. Facing the challenges in simulation-based earth system sciences and the role of FAIR digital objects. Research Ideas and Outcomes, 2022, 8: e95817 [85] Yang XY, Delparte D. A procedural modeling approach for ecosystem services and geodesign visualization in old town Pocatello, Idaho. Land, 2022, 11: 1228 [86] La Guardia M, Koeva M. Towards digital twinning on the web: Heterogeneous 3D data fusion based on open-source structure. Remote Sensing, 2023, 15: 721 [87] Wu T, Vallet B, Demonceaux C. Mobile Mapping Mesh Change Detection and Update [EB/OL]. (2023-03-13) [2024-09-09]. https://doi.org/10.48550/arXiv.2303.07182 [88] Gupta A, Mora S, Preisler Y, et al. Tools and methods for monitoring the health of the urban greenery. Nature Sustainability, 2024, 7: 536-544 |
[1] | 王欣悦, 王传文, 梁蕙仪, 高冬阳, 杨丹晨, 邱玲, 高天. 基于鸟类栖息地的西安市生态网络构建及景观优化 [J]. 应用生态学报, 2025, 36(8): 2525-2534. |
[2] | 于景华, 冯月, 高畅, 何兴元, 于贵瑞. 黑龙江大兴安岭地区科学发展路径 [J]. 应用生态学报, 2025, 36(8): 2535-2540. |
[3] | 符文欣, 高畅, 任冠尧, 刘殿锋. 基于复杂网络理论的武汉市复合蓝绿生态网络构建 [J]. 应用生态学报, 2025, 36(7): 2139-2149. |
[4] | 周晓艳, 迪力阿热·塔依尔, 侯美玲, 何依依, 丁小飞. 基于生态网络的三峡库区湖北段土地碳代谢 [J]. 应用生态学报, 2025, 36(7): 2150-2158. |
[5] | 曹维佳, 杨庆康, 贾国秀, 白惠婷, 郭子譞, 王振兴, 王立新, 温璐. 基于生态脆弱性的乌兰察布生态网络构建与优化 [J]. 应用生态学报, 2025, 36(2): 376-382. |
[6] | 吴登瑜, 汤孟平. 天目山不同演替阶段乔木林物种多样性及其影响因子 [J]. 应用生态学报, 2025, 36(1): 13-20. |
[7] | 连虎刚, 刘春芳, 倪博文, 曲张明. 西北干旱区自然保护地体系生态网络构建及优化: 以河西走廊为例 [J]. 应用生态学报, 2025, 36(1): 259-270. |
[8] | 张慧东, 毛沂新, 王睿照, 朱健, 夏杭, 于大炮, 尤文忠. 辽东山区次生蒙古栎成熟林空间结构及个体竞争特征 [J]. 应用生态学报, 2024, 35(9): 2492-2500. |
[9] | 张晓龙, 李娜, 钟浚锋, 张晨洁, 于超, 张启翔, 罗乐. 单叶蔷薇种群结构与结实能力 [J]. 应用生态学报, 2024, 35(6): 1534-1542. |
[10] | 杨文越, 徐子豪, 叶泓妤, 李涛. 粤港澳大湾区道路基础设施对生态网络的影响 [J]. 应用生态学报, 2024, 35(6): 1653-1660. |
[11] | 梁华秋, 沈梦晗, 邵明, 姚朋. 基于生态系统服务供需的临沂市固碳生态网络构建 [J]. 应用生态学报, 2024, 35(3): 759-768. |
[12] | 王剑武, 徐森, 季碧勇, 杜群. 地形和林分空间结构对浙江省天然阔叶混交林主要先锋树种胸径生长的影响 [J]. 应用生态学报, 2024, 35(2): 298-306. |
[13] | 窦寒梅, 赵锐锋, 陈喜东, 石晶, 王景发, 刘福寿. 西北干旱区国土空间生态修复优先区识别——以黑河流域张掖市为例 [J]. 应用生态学报, 2024, 35(2): 469-479. |
[14] | 石晶, 石培基, 王梓洋, 万雅, 程番苑, 王丽蓉. 基于复杂网络理论和电路模型的酒泉市生态网络优化 [J]. 应用生态学报, 2024, 35(1): 237-246. |
[15] | 黄俊达, 黄金玲, 陈超劲. 以自然保护地为主体的广州市域生态网络构建 [J]. 应用生态学报, 2024, 35(1): 247-254. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||