欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (9): 2737-2744.doi: 10.13287/j.1001-9332.202509.005

• 研究论文 • 上一篇    下一篇

漳江口4种红树植物水力-光合特征的冠层差异及耦合机制

陈瑞鑫, 石凯元, 李伟煌, 简婷怡, 洪滔*   

  1. 福建农林大学林学院, 福州 350002
  • 收稿日期:2025-05-12 接受日期:2025-07-14 出版日期:2025-09-18 发布日期:2026-04-18
  • 通讯作者: *E-mail: henrihong@163.com
  • 作者简介:陈瑞鑫,男,2000年生,硕士研究生。主要从事生态系统结构与功能研究。E-mail:npcrx@qq.com
  • 基金资助:
    福州市科技计划项目(2022-S-006)

Canopy differences and coupling mechanisms of hydraulic photosynthetic characteristics of four mangroves in Zhangjiang Estuary, China

CHEN Ruixin, SHI Kaiyuan, LI Weihuang, JIAN Tingyi, HONG Tao*   

  1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2025-05-12 Accepted:2025-07-14 Online:2025-09-18 Published:2026-04-18

摘要: 为明晰红树植物在不同垂直层次的水分适应机制,以福建漳江口红树林国家级自然保护区4种红树植物(桐花树、秋茄、白骨壤、木榄)为对象,测定不同垂直层次的水力结构和光合特征指标,比较上下层次间水力结构和光合特征的差异。结果表明: 4种红树植物上层叶片的净光合速率和羧化速率均显著高于下层叶片;而下层叶片的胞间CO2浓度均显著高于上层叶片,其中白骨壤的净光合速率最高,上、下层叶片的净光合速率值分别为10.87和8.94 μmol·m-2·s-1。4种红树植物上层枝条的边材比导率和叶比导率均显著优于下层,其中桐花树枝条的边材比导率在各层均最高,上、下层枝条的边材比导率分别为0.105和0.061 kg·s-1·m-1·MPa-1,上层的胡伯尔值显著低于下层。树冠上层的水力结构与光合特征关联性较强,对水分供应的需求更为迫切,具备更高效的水分运输系统;而树冠下层的水力结构与光合特征关联性较弱,在结构性碳投资上较大,有着更好的结构支撑作用,面临的栓塞风险较小。4种红树植物树冠上层的光合-水力耦合机制较为一致,而树冠下层的耦合机制差异显著。红树植物在不同垂直层次有着不同的水力特征以保证水分高效利用。

关键词: 红树植物, 水力特征, 垂直层次, 光合特征, 适应策略

Abstract: To clarify the water adaptation mechanisms of mangroves across vertical canopy strata, we selected four species (Aegiceras corniculatum, Kandelia obovata, Avicennia marina, Bruguiera gymnorrhiza) from Zhangjiangkou Mangrove National Nature Reserve, Fujian Province. We measured the hydraulic structure and photosynthetic characteristics across different vertical layers, and compared the differences between the upper and lower canopy levels. The results showed that net photosynthetic rate and carboxylation efficiency of four mangrove species in the upper leaves was significantly higher than that of the lower leaves, whereas intercellular CO2 concentration of the lower leaves was significantly higher in upper leaves. Among the four species, A. marina exhibited the highest net photosynthetic rate, with a rate of 10.87 and 8.94 μmol·m-2·s-1 in its upper and lower leaves, respectively. Upper-canopy branches of the four species demonstrated significantly higher sapwood specific conductivity and leaf-specific conductivity compared to lower-canopy branches. A. corniculatum exhibited the highest sapwood specific conductivity in all layers. A. corniculatum consistently displayed the highest sapwood specific conductivity across strata, with values of 0.105 and 0.061 kg·s-1·m-1·MPa-1 for upper and lower branches, respectively. The Huber value was significantly lower in the upper canopy. The upper canopy exhibited stronger coordination between hydraulic architecture and photosynthetic traits, indicating a greater demand for efficient water supply and possessing a more effective water transport system. In contrast, the lower canopy showed weaker hydraulic-photosynthetic trait coordination, invested more heavily in structural carbon, provided enhanced structural support, and displayed lower embolism vulnerability. The coupling mechanism between photosynthesis and hydraulics was relatively consistent across species within the upper canopy. However, there was significant interspecific variation in this coupling mechanism in the lower canopy. These results demonstrated that mangrove species employ distinct hydraulic strategies at different vertical canopy levels to optimize water use efficiency.

Key words: mangrove, hydraulic characteristics, vertical hierarchy, photosynthetic characteristics, adaptation strategy