[1] 周波涛, 钱进. IPCC AR6报告解读: 极端天气气候事件变化. 气候变化研究进展, 2021, 17(6): 713-718 [2] 张佳兴, 杨小飘, 卢俊杰. 浅析气候变化对森林树木的影响. 现代园艺, 2024, 47(12): 168-170 [3] 程莉, 李玉霖, 宁志英, 等. 木本植物应对干旱胁迫的响应机制: 基于水力学性状视角. 生态学报, 2024, 44(7): 2688-2705 [4] Liu H, Gleason SM, Hao GY, et al. Hydraulic traits are coordinated with maximum plant height at the global scale. Science Advances, 2019, 5: eaav1332 [5] Ryan MG, Yoder BJ. Hydraulic limits to tree height and tree growth. Bioscience, 1997, 47: 235-242 [6] 曹宇, 巢林, 安宇宁, 等. 科尔沁沙地刺榆水力结构特征对土壤水分环境的响应. 林业科学, 2021, 57(7): 32-42 [7] 伍敏, 田雨, 樊大勇, 等. 干旱胁迫下毛白杨和元宝槭的水力学调控. 植物生态学报, 2022, 46(9): 1086-1097 [8] 林鹏. 中国红树林研究进展. 厦门大学学报: 自然科学版, 2001, 40(2): 592-603 [9] Scholander PF, Hammel HT, Hemmingsen E, et al. Salt balance in mangroves. Plant Physiology, 1962, 37: 722-729 [10] 宗毓铮, 杨琦, 常翠翠, 等. 大气CO2浓度升高对干旱条件下冬小麦叶片光合适应的影响. 应用生态学报, 2021, 32(12): 4370-4380 [11] 孙逸翔, 张静, 周晓兵, 等. 伊犁河谷退化野果林中新疆野苹果茎的水力结构. 应用生态学报, 2020, 31(10): 3340-3348 [12] 赵琦琳, 田文斌, 郑忠, 等. 浙江天童木本植物水力结构与树高的关联性. 生态学报, 2020, 40(19): 6905-6911 [13] 汤璐瑶, 方菁, 钱海蓉, 等. 落羽杉和池杉功能性状随高度的变异与协同. 植物生态学报, 2023, 47(11): 1561-1575 [14] Bittencourt PRL, Bartholomew DC, Banin LF, et al. Divergence of hydraulic traits among tropical forest trees across topographic and vertical environment gradients in Borneo. New Phytologist, 2022, 235: 2183-2198 [15] Petit G, Pfautsch S, Anfodillo T, et al. The challenge of tree height in Eucalyptus regnans: When xylem tapering overcomes hydraulic resistance. New Phytologist, 2010, 187: 1146–1153 [16] 冷冰, 曹坤芳. 红树植物水分关系研究进展. 植物科学学报, 2020, 38(4): 574-584 [17] 陈铁晗. 福建漳江口红树林湿地自然保护区生态系统现状与评价. 福建林业科技, 2001, 28(4): 25-26 [18] 周在明, 陈本清, 徐冉, 等. 基于无人机高光谱特征的红树林种群识别研究: 以漳江口红树林国家级自然保护区为例. 海洋学报, 2021, 43(9): 137-145 [19] 金鹰, 王传宽. 九种不同材性的温带树种叶水力性状及其权衡关系. 植物生态学报, 2016, 40(7): 702-710 [20] 张昆, 万勇善, 刘风珍, 等. 花生幼苗光合特性对弱光的响应. 应用生态学报, 2009, 20(12): 2989-2995 [21] 王明浩, 张晓玮, 王婧如, 等. 一种简易准确测定木质部导水率的新方法. 植物生理学报, 2013, 49(3): 297-300 [22] 姜振升, 孙晓琦, 艾希珍, 等. 低温弱光对黄瓜幼苗Rubisco与Rubisco活化酶的影响. 应用生态学报, 2010, 21(8): 2045-2050 [23] 刘芸, 钟章成, 王小雪, 等. 栝楼雌雄植株的光合作用和蒸腾作用特性. 应用生态学报, 2011, 22(3): 644-650 [24] Zimmermann MH. Hydraulic architecture of some diffuse-porous trees. Canadian Journal of Botany, 1978, 56: 2286-2295 [25] 冯相艳, 赵文智, 蔺鹏飞, 等. 祁连山北坡主要木本植物功能性状及其海拔分异. 生态学报, 2022, 42(23): 9726-9735 [26] Burgess SSO, Pittermann J, Dawson TE. Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens crowns. Plant, Cell & Environment, 2006, 29: 454-463 [27] 缪绅裕, 林海波, 陈学梅. 大亚湾红树林研究.Ⅱ. 澳头港部分红树植物的生态生理. 植物研究, 1997, 17(3): 99-104 [28] 江鎞倩, 李瑞利, 沈小雪, 等. 红树植物耐盐–耐淹性的荟萃分析及其应用对策. 北京大学学报: 自然科学版, 2022, 58(4): 687-699 [29] 李元跃, 林鹏. 三种红树植物叶片的比较解剖学研究. 热带亚热带植物学报, 2006, 14(4): 301-306 [30] Wu S, Gu XX, Zheng YH, et al. Nocturnal sap flow as compensation for water deficits: An implicit water-saving strategy used by mangroves in stressful environments. Frontiers in Plant Science, 2023, 14: 1118970 [31] Sperry JS, Meinzer FC, Mcculloh KA. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant, Cell & Environment, 2008, 31: 632-645 [32] 中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 1979: 33 [33] 黄丽. 福建省漳江口秋茄、桐花树、白骨壤和木榄光合作用季节动态研究. 湿地科学, 2013, 11(1): 82-89 [34] Lawson T, Vialet-Chabrand S. Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist, 2018, 221: 93-98 [35] 陈瑞鑫, 简婷怡, 林勇明, 等. 闽江河口秋茄异龄叶性状及其叶经济谱. 应用生态学报, 2025, 36(5): 1330-1338 [36] Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change. Nature, 2003, 424: 901-908 [37] Scoffoni C, Chatelet DS, Pasquet-kok J, et al. Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants, 2016, 2: 16072 [38] Brodribb TJ, Holbrook NM. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiology, 2003, 132: 2166-2173 [39] Zhu S, Cao K. Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecology, 2009, 204: 295-304 [40] 赵平, 孙谷畴, 倪广艳, 等. 成熟马占相思水力导度对水分利用和光合响应的季节性差异. 应用生态学报, 2013, 24(1): 49-56 [41] Janssen TA J, Höltt T, Fleischer K, et al. Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Plant, Cell and Environment, 2020, 43: 965-980 [42] Brodribb TJ, Jordan GJ. Internal coordination between hydraulics and stomatal control in leaves. Plant, Cell & Environment, 2008, 31: 1557-1564 [43] Gleason SM, Westoby M, Jansen S, et al. Weak tradeoff between xylem safety and xylem specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 2016, 209: 123-136 [44] Sack L, Tyree MT, Holbrook NM. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytologist, 2005, 167: 403-413 [45] Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33: 317-345 [46] Brodribb TJ, Holbrook NM. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Functional Plant Biology, 2003, 30: 1055-1060 [47] Carter JL, White DA. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth. Tree Physiology, 2009, 29: 1407-1418 |