[1] |
David MS, Claudia WR, John S. Stable isotopes reveal rapid cycling of soil nitrogen after manure application. Journal of Environmental Quality, 2017, 46: 261-271
|
[2] |
Pan YP, Tian SL, Wu D, et al. Ammonia should be considered in field experiments mimicking nitrogen deposition. Atmospheric and Oceanic Science Letters, 2020, 13: 248-251
|
[3] |
Yang YY, Liu L, Zhang F, et al. Soil nitrous oxide emissions by atmospheric nitrogen deposition over global agricultural systems. Environmental Science & Technology, 2021, 55: 4420-4429
|
[4] |
谢开云, 王玉祥, 万江春, 等. 混播草地中豆科/禾本科牧草氮转移机理及其影响因素. 草业学报, 2020, 29(3): 157-170
|
[5] |
Mattsson B, Herrmann S, Jones A, et al. Contribution of different grass species to plant-atmosphere ammonia exchange in intensively managed grassland. Biogeosciences, 2009, 6: 59-66
|
[6] |
戴廷波, 曹卫星, 荆奇. 氮形态对不同小麦基因型氮素吸收和光合作用的影响. 应用生态学报, 2001, 12(6): 849-852
|
[7] |
刘学军, 沙志鹏, 宋宇, 等. 我国大气氨的排放特征、减排技术与政策建议. 环境科学研究, 2021, 34(1): 149-157
|
[8] |
Ashraf M, Mahmood T, Azam F. Translocation and recovery of 15N-labelled N derived from foliar uptake of 15NH3 by rice (Oryza sativa L.) cultivars. Biology and Fertility of Soils, 2003, 38: 257-260
|
[9] |
Luiz SE, Abelardo G, Albertino BJ, et al. Fertilizer nitrogen and corn plants: Not all volatilized ammonia is lost. Agronomy Journal, 2018, 110: 1111-1118
|
[10] |
Chen XL, Ren XL, Sadam H, et al. Effects of elevated ammonia concentration on corn growth and grain yield under different nitrogen application rates. Journal of Soil Science and Plant Nutrition, 2020, 20: 1961-1968
|
[11] |
Huang H, Zhou M, Liang B, et al. Effects of atmospheric CO2 on canopy uptake of gaseous ammonia by tomato (Lycopersicum esculentum Mill.) in polytunnel vegetable production systems. Scientia Horticulturae, 2022, 293: 110739
|
[12] |
Pérez-Soba M, Stulen I, van der Eerden LJM. Effect of atmospheric ammonia on the nitrogen metabolism of Scots pine (Pinus sylvestris) needles. Physiologia Plantarum, 2010, 90: 629-636
|
[13] |
周思婕, 张敏, 王平. 植物质膜H+-ATP酶对环境胁迫因子的响应研究进展. 应用与环境生物学报, 2021, 27(2): 485-494
|
[14] |
Castro A, Stulen I, Posthumus FS, et al. Changes in growth and nutrient uptake in Brassica oleracea exposed to atmospheric ammonia. Annals of Botany, 2006, 97: 121-131
|
[15] |
李鑫格, 项方林, 吴思雨, 等. 基于植被指数时序动态的冬小麦氮素营养诊断方法. 麦类作物学报, 2022, 42(1): 109-119
|
[16] |
谢迎新, 张淑利, 赵旭, 等. 作物地上部氨排放及对大气氮沉降的吸收. 生态环境学报, 2009, 18(5): 1929-1932
|
[17] |
李静. 大气氨营养对小麦和玉米根冠特征及氮效率的影响. 硕士论文. 杨凌: 西北农林科技大学, 2009
|
[18] |
Hu B, Wang W, Ou S, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 2015, 47: 834-838
|
[19] |
Lalor S, Schroder JJ, Lantinga EA, et al. Effect of application timing and grass height on the nitrogen fertilizer replacement value of cattle slurry applied with a trailing-shoe application system. Grass and Forage Science, 2014, 69: 488-501
|
[20] |
张晓果, 王丹英, 计成林, 等. 水稻氮素吸收利用研究进展. 中国稻米, 2015, 21(5): 13-19
|
[21] |
周伟, 吕腾飞, 杨志平, 等. 氮肥种类及运筹技术调控土壤氮素损失的研究进展. 应用生态学报, 2016, 27(9): 3051-3058
|
[22] |
郭天财, 宋晓, 马冬云, 等. 施氮水平对冬小麦旗叶光合特性的调控效应. 作物学报, 2007, 33(12): 1977-1981
|
[23] |
陈雨海, 余松烈, 于振文. 小麦生长后期群体光截获量及其分布与产量的关系. 作物学报, 2003, 29(5): 730-734
|
[24] |
李翎, 曹翠玲. 氮素水平对小麦幼苗叶绿体色素蛋白复合体含量的影响. 西北植物学报, 2007, 27(3): 554-559
|
[25] |
景建元, 孙晓, 杨阳, 等. 施氮水平对冬小麦冠层氨挥发的影响. 农业环境科学学报, 2017, 36(2): 401-408
|
[26] |
Qi DL, Hu TT, Xue S, et al. Effect of nitrogen supply method on root growth and grain yield of maize under alternate partial root-zone irrigation. Scientific Reports, 2019, 9: 8191
|
[27] |
陈小莉, 李世清, 任小龙, 等. 大气NH3和介质供氮水平对不同氮效率玉米基因型叶绿素荧光参数的影响. 生态学报, 2008, 28(3): 1026-1033
|
[28] |
秦艳青, 李春俭, 赵正雄, 等. 不同供氮方式和施氮量对烤烟生长和氮素吸收的影响. 植物营养与肥料学报, 2007, 13(3): 436-442
|