[1] 王世杰, 刘再华, 倪健, 等. 中国南方喀斯特地区碳循环研究进展. 地球与环境, 2017, 45(1): 2-9 [2] 熊康宁, 李晋, 龙明忠. 典型喀斯特石漠化治理区水土流失特征与关键问题. 地理学报, 2012, 67(7): 878-888 [3] Liu C, Liu Y, Guo K. Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environmental and Experimental Botany, 2011, 71: 174-183 [4] 李阳兵, 谢德体, 魏朝富. 岩溶生态系统土壤及表生植被某些特性变异与石漠化的相关性. 土壤学报, 2004(2): 196-202 [5] Fan D, Jie S, Liu C, et al. The trade-off between safety and efficiency in hydraulic architecture in 31 woody species in a karst area. Tree Physiology, 2011, 31: 865-877 [6] Jiang ZC, Lian Y, Qin X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sciences Reviews, 2014, 132: 1-12 [7] 曹建华, 蒋忠诚, 袁道先, 等. 岩溶动力系统与全球变化研究进展. 中国地质, 2017, 44(5): 874-900 [8] 刘晓娟, 马克平. 植物功能性状研究进展. 中国科学: 生命科学, 2015, 45(4): 325-339 [9] Diaz S, Kattge J, Cornelissen J, et al. The global spectrum of plant form and function. Nature, 2016, 529: 167-171 [10] Wright IJ, Westoby M. Differences in seedling growth behaviour among species: Trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. Journal of Ecology, 2010, 87: 85-97 [11] 税伟, 郭平平, 朱粟锋, 等. 云南喀斯特退化天坑木本植物功能性状变异特征及适应策略. 地理科学, 2022, 42(7): 1295-1306 [12] 隆庆之, 杜虎, 苏樑, 等. 喀斯特常绿落叶阔叶林木本植物功能性状变异及其适应策略. 生态学报, 2023, 43(21): 8875-8883 [13] 庞世龙, 欧芷阳, 申文辉, 等. 桂西南喀斯特地区优势木本经济植物叶功能性状变异及其适应策略. 广西植物, 2021, 41(5): 707-714 [14] 任书杰, 于贵瑞, 姜春明, 等. 中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征. 应用生态学报, 2012, 23(3): 581-586 [15] Wright IJ, Reich PB, Westoby M. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827 [16] Famiglietti CA, Worden M, Anderegg LDL, et al. Impacts of climate timescale on the stability of trait-environment relationships. New Phytologist, 2024, 241: 2423-2434 [17] 周怡, 焦亮, 秦慧君, 等. 克隆植物芦苇叶片功能性状对异质环境的响应. 应用生态学报, 2022, 33(8): 2171-2177 [18] Santiago LS, Wright SJ. Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 2007, 21: 19-27 [19] 陈洪松, 聂云鹏, 王克林. 岩溶山区水分时空异质性及植物适应机理研究进展. 生态学报, 2013, 33(2): 317-326 [20] 汪建华, 周先容, 尚进, 等. 金佛山巴山榧树灌丛群落主要木本植物种群生态位特征. 生态学杂志, 2014, 33(5): 1135-1141 [21] 戴亚南. 金佛山自然保护区生物多样性及其保护浅析. 热带地理, 2002(3): 279-282 [22] 吕同汝, 蒋勇军, 吴泽, 等. 亚热带岩溶区典型常绿和落叶树种的蒸腾特征及其对环境因子的响应. 生态学报, 2022, 42(3): 1047-1058 [23] Rueden CT, Schindelin J, Hiner MC. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 2017, 18: 529 [24] Cornelissen JHC, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51: 335-380 [25] Cavender-Bares J, Kozak KH, Fine PVA, et al. The merging of community ecology and phylogenetic biology. Ecology Letters, 2009, 12: 693-715 [26] 尧婷婷, 孟婷婷, 倪健, 等. 新疆准噶尔荒漠植物叶片功能性状的进化和环境驱动机制初探. 生物多样性, 2010, 18(2): 188-198 [27] Givnish TJ. Comparative-studies of leaf form: Assessing the relative roles of selective pressures and phylogenetic constraints. New Phytologist, 1987, 106: 131-160 [28] Albert CH, Thuiller W, Yoccoz NG, et al. Intraspecific functional variability: Extent, structure and sources of variation. Journal of Ecology, 2010, 98: 604-613 [29] 向琳, 陈芳清, 耿梦娅, 等. 井冈山鹿角杜鹃群落灌木层植物叶功能性状对海拔梯度的响应. 热带亚热带植物学报, 2019, 27(2): 129-138 [30] 钟巧连, 刘立斌, 许鑫, 等. 黔中喀斯特木本植物功能性状变异及其适应策略. 植物生态学报, 2018, 42(5): 562-572 [31] 龚时慧, 温仲明, 施宇. 延河流域植物群落功能性状对环境梯度的响应. 生态学报, 2011, 31(20): 6088-6097 [32] Akram MA, Wang X, Shrestha N, et al. Variations and driving factors of leaf functional traits in the dominant desert plant species along an environmental gradient in the drylands of China. Science of the Total Environment, 2023, 897: 165394 [33] Koerselman W, Meuleman AFM. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1996, 33: 1441-1450 [34] 吴陶红, 龙翠玲, 熊玲, 等. 喀斯特森林不同生长型植物叶片功能性状变异及其适应特征. 应用与环境生物学报, 2023, 29(5): 1043-1049 [35] 冯相艳, 赵文智, 蔺鹏飞, 等. 祁连山北坡主要木本植物功能性状及其海拔分异. 生态学报, 2022, 42(23): 9726-9735 [36] 谭一波, 张统, 蒋行健, 等. 猫儿山交让木叶性状海拔变异格局及其环境影响因子. 应用生态学报, 2023, 34(12): 3223-3231 [37] 庞世龙, 欧芷阳, 申文辉, 等. 桂西南喀斯特地区优势木本经济植物叶功能性状变异及其适应策略. 广西植物, 2021, 41(5): 707-714 [38] 吴陶红, 龙翠玲, 熊玲, 等. 茂兰喀斯特森林不同演替阶段植物叶片功能性状与土壤因子的关系. 广西植物, 2023, 43(3): 463-472 [39] Reich PB, Ellsworth DS. Generality of leaf trait relationships: A test across six biomes. Ecology, 1999, 80: 1955-1969 [40] 孙梅, 田昆, 张贇, 等. 植物叶片功能性状及其环境适应研究. 植物科学学报, 2017, 35(6): 940-949 [41] Wu Z, Lv T, Zeng S, et al. Differential responses in water-use strategies of evergreen (Ligustrum lucidum) and deciduous (Robinia pseudoacacia) trees to tunnel excavation in a subtropical karst trough valley. Journal of Hydrology, 2024, 636: 131323 [42] 郭旭曼, 王佳敏, 杜浩瀚, 等. 桢楠幼苗适应喀斯特岩溶裂隙生境及降雨时间格局变化的方式. 生态学报, 2023, 43(1): 379-387 [43] 刘文倩, 李家湘, 龚俊伟, 等. 柯-青冈常绿阔叶林优势树种叶片性状变异及适应策略. 生态学报, 2022, 42(17): 7256-7265 [44] Liu C, Huang Y, Wu F, et al. Plant adaptability in karst regions. Journal of Plant Research, 2021, 134: 889-906 [45] 许洺山, 黄海侠, 史青茹, 等. 浙东常绿阔叶林植物功能性状对土壤含水量变化的响应. 植物生态学报, 2015, 39(9): 857-866 [46] 刘家齐, 梁燕, 肖凡, 等. 西南喀斯特区域不同植被恢复阶段土壤磷主要来源及其季节变化. 应用生态学报, 2023, 34(12): 3313-3321 [47] Herbert DA, Williams M, Rastetter EB. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry, 2003, 65: 121-150 [48] Chen S, Bai Y, Zhang L, et al. Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 2005, 53: 65-75 |